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ABSTRACT

THE EFFECTS OF NETWORK TOPOLOGY ON STRATEGIC BEHAVIOR

Siddharth Suri

Michael Kearns

The central question this thesis addresses is: if players are arranged in a network,

and they are strategically interacting only with other players in their local neighbor-

hood, how does the topology of the network affect the outcome of the interaction?

We answer this question by combining techniques from computer science, economics,

and sociology.

First, we introduce a graphical market model consisting of a bipartite network

with buyers on one side and sellers on the other. Trade can only occur between a

buyer and a seller if they are adjacent. We characterize when there will be variation

in equilibrium wealth in terms of the network topology. Furthermore, we quantify the

equilibrium wealth variation in social networks in terms of the degree distribution.

Both of these results show that the network topology strongly affects the equilibrium

behavior in this model. We also analyze a similar model where the players must buy

the edges and trade according to the network that was purchased. We give a complete

characterization of the equilibrium networks in this model.

Second, we assess a model of evolutionary game theory over networks. Evolu-

tionary game theory has been used to model biological and social interactions where

the dynamics are more imitative than optimizing. For two broad classes of graphs,

we characterize which strategies could be played by a large fraction of the population

that would guarantee they could not be overrun by any small mutant invasion. Here

again, the topology of the networks under study had a direct impact on the structure

of equilibria.

The final main component of this work is experimental in nature. A group of

undergraduates was instructed to solve the graph coloring problem. Each one used

our software system to control the color of one node in a network, and their objective
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was to arrive at a valid coloring. We varied the topology of the network by using

different generative models from social network theory. One key finding of this

experiment was that the group could color networks with low diameter much faster

than networks with high diameter — showing that network topology impacted group

behavior.
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Chapter 1

Introduction

This thesis uses techniques from computer science to explore the intersection of social

network theory1 and economics. The field of social network theory primarily focuses

on measuring the topology of naturally occurring networks and then inventing gen-

erative models that output networks of similar structure (see for example [103, 7]).

This field directs most of its attention toward networks that describe the interac-

tion of large populations of humans and produces models that are purely structural.

That is, social network theory models patterns of links between nodes in networks

rather than attempting to model the behavior of the people that these nodes rep-

resent. By turning to the field of economics and, specifically game theory, which

describes many models of interaction, we can incorporate behavioral dynamics into

our structural understanding of networks. Game theory analyzes models of fully

rational agents acting in their own best interests, models of collusion and coopera-

tion between agents, and even behavioral models based on experiments with actual

human subjects (see for example [88, 17]). The overwhelming majority of these mod-

els, however, do not consider network structure. They assume that all players can

1Since this field is relatively new, its name has not yet been codified. In this thesis we use

the term social network theory to refer to the study of interactions between members of a large

population; it has alternately been referred to as network science [22].
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interact with and directly affect all other players. Combining the interaction models

of game theory with the networks models of social network theory yields a much

richer, more accurate model of human behavior.

Most of the work in social network theory involves the measurement and observa-

tion of social networks. For example, work in this field studies statistical properties

of networks such as the degree distribution of the nodes, the average number of links

nodes maintain, the density of the edges, and the diameter of the entire network.

These types of statistics are often measured in real networks like the World Wide

Web, phone call graphs, e-mail networks, on-line communities, and co-authorship

networks (see for example [70, 50, 6, 71]). Once these types of statistics are found

in a variety of real world networks, the field creates generative models that output

networks with similar statistical properties. Two such models, which we discuss later

in this thesis, are called preferential attachment and small-world [95, 8, 103]. All of

these generative models have a few characteristics in common. They usually build

the graph sequentially by adding nodes and/or edges one at a time. Usually these

new nodes and edges are added via a stochastic dynamic. For example, in the case

of preferential attachment a new node attaches to an existing node with probabil-

ity proportional to that existing node’s degree. While these models often output

networks with similar statistical properties as those seen in nature, these stochastic

dynamics do not explicitly model the behavior of the players within the network.

That is, these dynamics model the structure of the network formation but not the

dynamics of the interactions that occur over these networks.

The field of game theory, on the other hand, provides many models of interaction.

Most game theoretic models consist of n players where the combined actions of all

players determines the payoffs to each individual player. Thus each player takes into

account the actions the other players might select when deciding his own action. The

field considers models where players interact in their own self interest by choosing

actions with the aim of maximizing their own payoff. Some models also allow for
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coalitions to form among groups of players [88]. Coming even closer to the real-world

behavior of people, the field of behavioral game theory derives models based on

observations from human subject experiments involving strategic games [17]. Game

theory considers a variety of different mechanisms to determine the payoffs to the

players. Many models use an abstract, multidimensional matrix to determine the

payoff for each player. Others models, such as those discussed in this thesis, use a

market mechanism or a model based on evolutionary dynamics where a higher payoff

represents a higher reproductive fitness [106]. The vast majority of these models only

consider settings where the action of each player can directly affect the payoff of every

other player. Put another way, in these models each player can interact with every

other player. As a result, these models do not consider the constraints that networks

impose on the interaction of the players.

There is a clear way that these two fields can inform one another: the game

theoretic models of interaction can be applied over networks, especially those gen-

erated by the models proposed by social network theory. In these models players

would still act strategically, but they would only be able to interact with the other

players in their local neighborhood. This would allow for the analysis of the be-

havior of the players over realistic networks. Such interdisciplinary models provide

an important contribution because behavioral analysis is generally missing from the

social network theory models, and the study of realistic networks is largely lacking

in the game theory literature. Furthermore, the theoretical and empirical analysis

of models of interaction over networks would allow for the study of many fascinating

sociological questions on a large scale. For example, one could study how people be-

have differently when arranged in different networks, how people organize themselves

into communities, and how innovations spread across networks.

The field of computer science is in a unique position to contribute to the synthe-

sis of social network theory and game theory. From an empirical point of view, our

field has already developed many techniques appropriate for studying massive data
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sets that inspire the generative models of social network theory. Techniques from

streaming algorithms, sub-linear time algorithms, and external memory algorithms

can be used to study networks as big as the World Wide Web or the phone call

graph (see [82, 101] for excellent surveys of these areas). Additionally, techniques

from machine learning can be used to predict how people behave differently in differ-

ent networks or how these networks change over time. These types of analyses would

aid in the development of behavioral models over networks. Developing such models

is important because they often elucidate the governing dynamics of the players.

Analyzing these dynamics would lead to a better understanding of how changes to

local incentives and local interactions effect the behavior of a population as a whole.

Techniques from computer science can also help explore these models from a more

theoretical perspective. Algorithms for computing equilibria and best responses can

be used to analyze the equilibria of these network-based models (see [92], espe-

cially [59]). Also, simulation techniques can be used to study the behavior of the

players in theoretical models. Finally, the broad literature on graph theory can be

used to help understand the topological aspects of large scale networks [13, 20].

The intersection of social network theory and game theory, when studied from a

computer science point of view, provides a timely new research area teeming with

unexplored, well-motivated research directions. It is only recently, with the advent

of the Internet, that it has been feasible to gather large data sets to inform this

study. It is also only very recently that scientists have had the computational power

readily available to make the study data sets of these magnitudes feasible. Thus

the intersection of these three fields is currently ripe for exploration, and the work

in this thesis sits squarely at their nexus. Here we will combine economic and

game theoretic models of interactions with networks which are inspired by social

network theory. Throughout this thesis we use techniques from computer science to

explore these models. This new area is, however, far too broad to be fully covered

by any one thesis. Thus we begin its exploration by addressing one fundamental

4



question throughout this work: if players are arranged in a network, and they are

strategically interacting only with other players in their local neighborhood, how

does the topology of the network affect the outcome of the interaction? Since this

question is motivated by a variety of fields, we use a variety of techniques to answer it.

First and foremost we will use formal analysis of the theoretical models we introduce.

We will often support these theorems with simulations on both artificially produced

and real world data. These simulations will show how tight the bounds proved in

these theorems are and how close a large, but finite, population gets to a predicted

asymptotic behavior. Finally, we will also use experiments on actual human subjects

and perform statistical analysis of the data gathered from these experiments. All of

these models, simulations, and experiments and their respective analyses will serve

to elucidate the relationship between topology and behavior, thereby speaking to

the productive juncture of insights from social network theory and game theory.

Now we go on to give a brief overview of the models and experiments introduced

in this thesis and show how their analysis exhibits the effect of network topology

on behavior and outcome. First, we analyze the effect of network topology on the

equilibrium payoff of players in a market. To do this, we combine a model of mar-

kets from economics with a network generation model from social network theory.

We consider a bipartite network with buyers on one side and sellers on the other.

Buyers start with an initial endowment of one unit of an infinitely divisible abstract

good, which we call cash. Sellers start with an initial endowment of one unit of an

infinitely divisible good, which we call wheat. We assume that buyers wish to trade

their cash for as much wheat as possible, and that sellers wish to trade their wheat

for as much cash as possible. Furthermore, trade can occur between a buyer and a

seller only if they are attached by an edge. We examine how the topology of this

network affects the equilibrium payoff of the players in both general networks and

networks produced via preferential attachment, which is a model from social net-

work theory. We are particularly interested in how the statistical structure of such
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networks influences global economic quantities such as wealth variation. We also

show how this graphical model allows for the efficient approximation of a player’s

equilibrium wealth. Our findings, which were originally published in [56], combine

theoretical analysis, simulation, and experiments on real world international trade

data.

Second, we analyze a model similar to the one previously discussed. In the

previous model the trade network was exogenously defined. Here we analyze a similar

model where the trade network is endogenously defined. That is, buyers and sellers

still trade according to a network, but in this case the edges must be purchased.

Once the edges are purchased, then buyers and sellers trade according to the graph

that was paid for. We give a complete characterization of the equilibrium graphs

that can form and the equilibrium payoffs of the players when the construction of

the network is part of the game itself. This allows us to analyze how the topology of

the network affects the payoff of the players. This is theoretical work that originally

appeared in [37].

Third, we analyze a model of evolutionary game theory over networks. Evolu-

tionary game theory has become a plausible model not only for biological interaction

but also for economic and social interactions in which certain dynamics are more im-

itative than optimizing [98]. The model consists of organisms arranged in a network

in which each organism plays the same two-player game with each of its neighbors.

Each organism is of one of two types: incumbent or mutant. Incumbents all play

one strategy and mutants all play another strategy. These conditions result in each

organism earning a payoff in terms of their reproductive or evolutionary fitness. For

two broad classes of graphs, we characterize the strategies incumbents could play

that would guarantee they have a higher fitness than the mutants in any small inva-

sion. Such strategies ensure that the incumbent population could not be overrun by

any small mutant invasion. Thus we characterize how the topology of the network

affects the resilience of a strategy to competing strategies. This theoretical work,

6



which first appeared in [62], integrates game theory, as a model for social interaction,

with graph theory.

Finally, we explore the relationship between network topology and behavior in

a setting that combines behavioral game theory and social network theory. In this

case the players are actual human subjects; a group of students were assembled in

a computer lab to use software we developed that allowed each of them to control

the color of one vertex in a graph. The participants attempted to arrive at a valid

coloring of the graph in under five minutes, and they were paid for their performance.

(A valid coloring is one where each node has a color that is different than the color

of each of its neighbors.) We analyzed how changing the structure of the network

affected the students’ ability to collectively solve the graph coloring problem. We

chose the graph coloring problem because it abstracts many problems that appear

in computer science, logistics, and operations research. Moreover, the graphs the

subjects were given to color were generated using two models from the social network

theory literature, the small-world model and the preferential attachment model.

Since these were human subject experiments, we designed them using the paradigm of

behavioral game theory by systematically varying the parameters of the experiments

and by offering monetary incentives for performance. These experiments also allowed

us to compare the performance of the human subjects to distributed algorithms. This

work, which originally appeared in [63], showed how arranging the same group of

people in different networks affected their ability to collectively solve a problem.

Thus, these experiments get at the very heart of how network topology affects the

behavior of the players and the outcome of the interaction.

1.1 Economic Properties of Social Networks

Classical models of economic markets, such as the models of Fisher [42] and Arrow

and Debreu [4], only consider centralized exchange where any player can exchange

7



goods with any other player. One result of this centralized exchange is that there is

no price variation. That is, if two players both have an initial endowment of the same

good, say wheat, both of those players will have the same equilibrium price per unit of

wheat. We wish to model situations where a buyer might have access to only certain

sellers. This might arise due to geographic proximity or government regulations for

example. Thus we introduce the model of bipartite exchange economies. The model

consists of a bipartite network with buyers on one side and sellers on the other.

Initially, each buyer starts with an infinitely divisible cash endowment; each seller

starts with an endowment of an infinitely divisible abstract good, which we again call

wheat. Buyers wish to trade their cash for as much wheat as possible and sellers wish

to trade their wheat for as much cash as possible. Furthermore, trade can only occur

between a buyer and a seller if they are attached by an edge. We define the wealth of

a buyer to be the amount of wheat he gets per unit cash, and the wealth of a seller to

be the amount of cash he gets per unit wheat (which is the same as the sellers price).

We also define the wealth variation as the ratio of maximum to minimum wealth. We

show there will be no equilibrium wealth variation among the players (i.e. all players

earn the same equilibrium payoff) if and only if the underlying network contains a

perfect matching. This characterizes when there will and will not be wealth variation

in the graphical model, in contrast to the classical models of centralized exchange,

where there is never any price variation. Furthermore, this result describes a strong

relationship between network topology and equilibrium behavior.

We would also like to quantify the wealth variation as well as the wealth dis-

tribution in networks that one might see in the real world. Thus, we turn to the

burgeoning field of social network theory [83, 7, 104, 103] to provide us with a gener-

ative model of networks that have similar statistical properties to those that appear

in nature. One such model is called preferential attachment [95, 8, 14]. According to

this model, nodes are added to the graph sequentially. When a new node is added
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it attaches to ν existing nodes. Furthermore, with probability α a new link con-

nects to an existing node chosen uniformly at random, and with probability 1− α a

new link connects to an existing node with probability proportional to that existing

nodes degree. This results in nodes inserted at the beginning having substantially

higher degree than later nodes. In fact, the degree distribution of these graphs obeys

a power-law. (We defer the formal description of this model, and the statistical

properties of the graphs it generates, to Section 2.5.) When we analyze networks

generated via preferential attachment as bipartite exchange economies, we prove the

following theorem, which is supported by an experimental analysis, that provides

tight bounds on the wealth variation in terms of statistical properties of preferential

attachment graphs.

Theorem (2.6.2). In the bipartite (α, ν)-model, if α(ν2 + 1) < 1, then the ratio of

the maximum seller price to the minimum seller price scales with number of buyers

n as Ω(n
2−α(ν2+1)

1+ν ). For the simplest case in which α = 0 and ν = 1, this lower bound

is just Ω(n).

In addition, we prove that the distribution of wealth in these networks also obeys a

power-law, given by the following theorem.

Theorem (2.6.1). In the bipartite (α, ν)-model, the proportion of sellers with wealth

greater than ω is O(ω−1/β). For example, if α = 0 (pure preferential attachment)

and ν = 1, the proportion falls off as 1/ω2.

Again, we support this theoretical result with simulations. This is the first model

that explains the heavy tailed distribution of wealth in the real economies, first

observed by Pareto [91], in terms of purely network effects. Thus the marriage of

social network theory and general equilibrium theory gives insight how the topology

of social networks affects equilibrium behavior.

Another contribution of this work is more computational in nature. Our graphical

model provides an efficient, local algorithm that approximates the equilibrium wealth
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of a seller in the following way. Let s be a seller in a bipartite exchange economy

G, and let G′ be the induced economy consisting of all players within distance k

of s. We prove that if one computes the equilibrium wealth of s in G′, and k

is even, one gets a lower bound on the equilibrium price of s in G. Similarly, if

one computes the equilibrium wealth of s in G′, and k is odd, one gets an upper

bound on the equilibrium price of s in G. For the case of preferential attachment

graphs, we give an experimental analysis that shows that these two bounds converge

exponentially fast in k. We also give an experimental analysis that exhibits the

increase in computational speed of using this approximation method for each seller

as opposed to doing one global equilibrium computation. All of these results show

that the effect of topology on equilibria can be seen in the equilibrium wealth of the

players, as well as in the computational aspects of finding such an equilibria.

1.2 A Network Formation Game for

Bipartite Exchange Economies

In the model described in the previous section, buyers and sellers trade according to

an exogenously defined network. We also consider a model where buyers and sellers

trade according to an endogenously defined network. In this model, initially there

is a set of buyers and a set of sellers with no edges between them. The actions of

each player are to buy edges at a fixed cost of α per edge. The players trade via

the same market mechanism as the previous section according to the graph that

has been purchased. Each players payoff is defined as the wealth that player earns

due to market trading minus α times the number of edges that player bought. We

analyze the Nash equilibria of this network formation game. That is, we characterize

which networks are stable in the sense that no player could increase its payoff by

unilaterally deviating by buying a different set of edges.

The main result we give in this model is a complete characterization of such
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equilibrium graphs. We show that there are 3 families of equilibrium graphs. The

first family consists of perfect matchings. In these graphs all players earn a wealth

of 1 from market trading. The second family consists of disjoint monopolies where

one buyer exploits many sellers or one seller exploits many buyers. As a result, we

call this family of graphs Exploitation Graphs. These types of graphs occur when

the cost of an edge is high enough such that an exploited buyer, for example, cannot

buy an edge to an exploited seller and increase its payoff. The final family of graphs

consists of many disjoint minimum spanning trees with k sellers and k + 1 buyers

(or vice versa). In these graphs the buyers and sellers earn relatively equal amounts

from market trade, so we call these graphs Balanced Graphs. These types of graphs

occur when the cost of an edge is relatively low. The overall result is described in

following theorem.

Theorem (3.4.3). Let NE(n, α) be the set of all Nash equilibria graphs of the net-

work formation game for a fixed population size n and edge cost α, and let NE be the

union of NE(n, α) over all n and α. Then the set NE equals the union of classes

Perfect Matchings, Exploitation Graphs, and Balanced Graphs.

1.3 Networks Preserving Evolutionary Equilibria

and the Power of Randomization

Next we describe the classical model of evolutionary game theory and its fundamental

equilibrium concept, and then we describe how we introduce a network into this

model. The classical model of evolutionary game theory [96] considers an infinite

population of organisms, where each organism is assumed to be equally likely to

interact with each other organism. Interaction is modeled as playing a fixed, 2-

player, symmetric game. Suppose there is a 1 − ǫ fraction of the population who

play strategy s, and call these organisms incumbents; suppose there is an ǫ fraction

of the population who play t, and call these organisms mutants. The strategy s is

11



an evolutionarily stable strategy (ESS) if the expected fitness of incumbent is higher

than that of a mutant for all t 6= s and all sufficiently small ǫ [98].

Now we introduce a model of evolutionary game theory over networks. Instead

of each organism being equally likely to interact with each other organism, in the

graphical model each organism interacts with all of the organisms in its local neigh-

borhood. An organisms fitness is defined to be the average fitness it would obtain

if it played each one of its neighbors. This is equivalent to considering the expected

fitness of an organism interacting with a randomly chosen neighbor. We say that a

strategy s is stable with respect to a game F and an infinite family of graphs {Gn}∞n=0

if for all families of mutants {Mn}∞n=0 of linear size, all but o(n) of the mutants have

an incumbent neighbor of higher fitness. We will prove two complementary results

of the form, s is a classical ESS of F if and only if s is an ESS with respect to F

and a very broad class of graphs. We also show that if one were to require that all

mutants have an incumbent neighbor of higher fitness then it would be impossible

to have results that hold for these two classes of graphs and any 2-player, symmetric

game. Thus we only require all but a vanishing number of mutants have an incum-

bent neighbor of higher fitness. In addition, we prove that this definition recovers

the classical definition in the case of the network being a clique.

We now proceed to describe two complementary results in the network ESS

model. First, we consider a setting where the graphs are generated via the Gn,p

model of Erdős and Rényi [13]. In this model, every pair of vertices are joined by

an edge independently and with probability p (where p may depend on n). The

mutant set, however, will be constructed adversarially (subject to a size constraint

we will exhibit in Definition 4.3.3). For these settings, we show that for any 2-player,

symmetric game, s is a classical ESS of that game, if and only if s is an ESS for

random graphs, where p = Ω(1/nc) and 0 ≤ c < 1, and any linear sized mutant

family. We note that under these settings, if we let c = 1 − γ for small γ > 0, the

expected number of edges in Gn is n1+γ or larger — that is, just super-linear in the
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number of vertices and potentially far smaller than O(n2). The forward direction of

this theorem is stated below.

Theorem (4.5.1). Let F be any 2-player, symmetric game, and suppose s is a clas-

sical ESS of F . Let the infinite graph family G = {Gn}∞n=0 be drawn according to

Gn,p, where p = Ω(1/nc) and 0 ≤ c < 1. Then with probability 1, s is an ESS with

respect to F and G.

It is easy to convince oneself that once the graphs have only a linear number of edges,

we are flirting with disconnectedness, and there may simply be large mutant sets

that can survive in isolation due to the lack of any incumbent interactions in certain

games. Thus we examine the minimum plausible edge density for random graphs.

In addition to proving the above theorem, we also prove its converse, Theorem 4.5.2,

in Section 4.5.1.

The second result is a kind of dual to the first. It assumes the graphs are chosen

arbitrarily (subject to edge density restrictions) and the mutant sets are chosen

randomly. It states that for any 2-player, symmetric game, s is a classical ESS

for that game, if and only if s is an ESS for any family of graphs in which for all

v ∈ V , deg(v) = Ω(nγ) (for any constant γ > 0), and a family of mutant sets that is

chosen randomly (that is, in which each organism is labeled a mutant with constant

probability ǫ > 0). We give the formal statement of the forward direction of this

theorem below.

Theorem (4.5.3). Let G = {Gn = (Vn, En)}∞n=0 be an infinite family of graphs in

which for all v ∈ Vn, deg(v) = Ω(nγ) (for any constant γ > 0). Let F be any

2-player, symmetric game, and suppose s is a classical ESS of F . Let t be any

mutant strategy, and let the mutant family M = {Mn}∞n=0 be chosen randomly by

labeling each vertex a mutant with constant probability ǫ, where ǫt > ǫ > 0. Then

with probability 1, s is an ESS with respect to F , G and M .

In addition to proving the above theorem, we also prove its converse, Theorem 4.5.5,
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in Section 4.5.2. Thus, in this setting we again find that classical ESS are preserved

subject to edge density restrictions. Again, the reason that we can characterize the

evolutionarily stable incumbent strategies is that this graph topology precludes small

islands of mutants that could prosper with only minimal contact with incumbents.

In both of these results the topology of the network has a direct effect on the

structure of equilibria, and now we discuss what they imply about the relationship

between the graphical and classical models. At an intuitive level, the first result says

that if a graph is chosen randomly and the mutants are chosen adversarially, then

classical ESS, and only those, are preserved. The second result says that if the graph

is chosen adversarially and the mutants are chosen randomly, then classical ESS, and

only those, are preserved. This shows that for the purposes of characterizing stable

strategies, the random matching scheme of the classical model is equivalent to either

randomizing the graph or randomizing the mutations.

1.4 An Experimental Study of the Coloring

Problem on Human Subject Networks

The final main component of this work is experimental in nature. Its purpose is

to investigate how the same group of people behave when organized in different

networks. A group of 38 undergraduates were instructed to solve the graph coloring

problem. Each person was assigned to control the color of a different node in a 38

node graph. They used a distributed software system which allowed them to change

the color of their node asynchronously, and to see the other nodes changing colors

in real time. Their objective was to arrive at a valid coloring (where each node

has a color different than each of its neighbors) in under 300 seconds. The subjects

were paid for their performance. We performed a series of experiments where we

systematically varied 3 design variables. Next we describe each design variable, how

we varied it, and the conclusions we draw from doing so.
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We systematically varied the topology of the networks that the subjects were

given to color. The subjects colored graphs chosen from the small-world [103] and

preferential attachment models [95, 8], which are generative models from the social

network theory literature, as well as a “leader cycle”, which models corporate or

military networks. The small-world family consists of graphs which have a simple

cycle containing all the nodes, augmented with a variable number of chords. These

graphs model nodes that have a few links to geographically close neighbors as well

as a few long distance links. The graphs we chose from the small-world model were

a simple cycle, a cycle with 5-chords, and a cycle with 20-chords. The subjects

also colored a leader cycle, which has a more hierarchical topology. It consists of

a simple cycle of 36 nodes, and two leader nodes. One leader node is connected to

the 18 nodes on the cycle with even parity, and the other leader node is connected

to the 18 nodes on the cycle with odd parity. The leaders are also connected to

each other. The simple cycle, 5-chord cycle, 20-chord cycle, and leader cycle have a

diameter of 19, 12, 7, and 3, respectively, and all of these graphs are 2-colorable. We

found that as the diameter of these cycle-based graphs decreased, so did the time

in which it took the subjects to color the graphs. The participants also colored 2

graphs from the preferential attachment model. These are constructed by adding

nodes to the graph sequentially. Each new node attaches to an existing node with

probability proportional to that existing node’s degree. One preferential attachment

graph was constructed by each new node attaching to 2 existing nodes, and one was

constructed by each new node attaching to 3 existing nodes. The graph with 2 new

links per vertex has a diameter of 5, and the graph with 3 new links per vertex has

a diameter of 4. We observed that the lower diameter preferential attachment graph

was colored faster than the higher diameter preferential attachment graph. One of

the key findings of this experiment was that the group could color networks with low

diameter much faster than networks with high diameter — showing that network

topology impacted group behavior.
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We also varied how much information the participants were allowed to see. In

1/3 of the experiments, the subjects could only see their color and the color of their

neighbors, in 1/3 of the experiments the subjects could see their color, the color of

their neighbors and their neighbors degree, and in the final 1/3 of the experiments

the subjects could see the entire graph and the color of every node. We found

that increasing the amount of information the subjects could see helped them color

the 2-colorable, cycle based networks much faster. On the other hand, increasing

the amount of information hindered their ability to color the complex preferential

attachment graphs. This observation implies that in the case of human subjects, not

only does the topology of the network affect behavior, but also how much information

is revealed to the subjects about the topology.

The third and final design variable we varied was the incentive scheme. In 1/2

of the experiments, we used a global incentive scheme, where each subject was paid

$5 if the group successfully colored the graph. In the other 1/2 of the experiments,

we used an individual incentive scheme, where each subject was paid $5 if they had

no color conflicts (having the same color as a neighbor) at the end of an experiment.

Recall that an experiment would end if either the group found a valid coloring or

300 seconds elapsed. We found that the subjects changed color when they had no

coloring conflicts over twice as many times under the global incentive scheme, than

under the individual incentive scheme. A possible reason for a node to change color

when it has no color conflicts is to escape a perceived local minimum in the search

for a valid coloring. This shows that human subjects can change behavior quite

dramatically with only subtle changes to their incentive scheme.

The motivation for these experiments is two-fold. First, the relationship between

network structure and behavior is difficult to establish by observing people engaged

in their natural social network. In such studies the network structure is fixed and

given, thus preventing the investigation of alternatives. A different approach is to
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conduct controlled laboratory experiments in which network structure is deliber-

ately varied. Second, since the pioneering “small-world” experiment [99, 78], there

has been a long and fascinating literature examining the structural and navigational

properties of natural social networks. Findings range from the now-familiar of “six

degrees of separation” to more recent theoretical explanations of the heuristics peo-

ple might employ to exploit social network structure [28, 105, 68, 69]. This line of

investigation can be summarized in computer science terminology: Using relatively

local information, distributed human organizations can collectively compute good

approximations to the all-pairs shortest paths problem. Given the volume and visi-

bility of this research, it is perhaps surprising that there is little work on its natural

generalization — namely, what other types of distributed optimization problems can

humans networks solve? These experiments begin to answer this question.

1.5 Related Work

In this section we discuss previous research that is relevant to the general topic

of relating network topology to equilibrium structure. We defer the discussion of

work that is related to only one of the specific models proposed in this thesis to

the chapter dedicated to that model. First, we outline the previous work that has

inspired this general line of questioning. Then, we describe other work that exhibits a

relationship between network topology and equilibrium behavior. Finally, we briefly

mention algorithmic research that leverages network structure to compute equilibria.

Much of the work in this thesis is inspired by the notion of a graphical game

introduced in [60] and the notion of a graphical economy introduced in [55]. We

discuss these two concepts in turn. We give the formal definition of a graphical game

below (taken from [59]), but first we define some necessary notation. In a graphical

game player i is identified with vertex i in an undirected graph G = (V, E). Let

N(i) denote the neighborhood of i, that is N(i) = {j|(i, j) ∈ E} ∪ {i}. Let ~a denote
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a vector describing the actions of all players, and let ~ai denote the projection of ~a

onto the players of N(i).

Definition 1.5.1. A graphical game is a pair (G,M) where G is an undirected

graph over the vertices {1, . . . , n}, andM is a set of n local game matrices. For any

joint action ~a, the local game matrix Mi ∈ M specifies the payoff Mi(~a
i) for player

i, which depends only on the actions taken by the players in N(i).

The contributions of this concept are myriad. First, since the influence on each

players payoff is explicity described in the graph G, one can now ask questions such

as: how does the topology of the graph G affect the structure of the equilibrium. This

is the central question of this thesis. Second, this definition allows for the compact

representation of a normal form game. To represent a game with n players, where

each player has 2 actions in tabular form, would require a matrix of size n2n. In the

case where the payoff of each player depends only a maximum of d other players,

the graphical game representation only requires space exponential in d which may

be considerably smaller than n. Third, algorithms can leverage the expressiveness

of the graph G to compute equilibria of graphical games with restricted topologies

in cases where computing equilibria of the general game is intractable.

In [55] the authors introduced the model of graphical economies which imposes a

graphical framework onto market-based games. In this model each player is identified

with a node in an undirected graph, and players can only trade with players they

are connected to. Each player has a continuous, monotone, and quasi-concave utility

function that describes their preferences for different bundles of goods. Each player

starts off with an initial bundle of goods, and there is a price vector that describes the

prices of the goods sold by each player. Players can trade their goods with others in

their neighborhood according to this price vector and their utility functions in order

to get a bundle which gives them higher utility. An equilibrium is reached if each

players only end up with a bundle that makes them optimally happy, given their

budget and the local prices, and the supply of each good in a neighborhood equals
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its demand in that neighborhood. The authors give very general conditions as to

when such an equilibrium exists, as well as algorithms for computing such equilibria.

More importantly, from the perspective of this work, they show that there can be

equilibrium price variation in this model. That is, at equilibrium two players could

command different prices for the same good strictly due to the differing positions

these two players occupy in the graph. The authors do not quantify how much price

variation there could be; they merely show that it could exist.

Thus, graphical games provide a formalism in which one can begin to explore

the relationship between network topology and equilibrium structure, and graphical

economies show that there can indeed be a causal relationship between the two. This

thesis seeks to quantify and describe that relationship. Next we survey other results

that relate network topology to structure of equilibria.

The authors of [74] introduced the model of interdependent security (IDS) games.

We describe this model using the example of airline baggage security. When a bag

is first checked into an airline it is screened for explosive devices. But, when bags

are transferred from one airline to another, the receiving airline usually does not

perform any extra screening. Thus each airline has a direct risk, the risk of having

an explosive device checked directly in to that airline, as well as an indirect risk,

the risk of having an explosive device transferred from another airline. These two

sources of risk, direct, which an airline can mitigate, and indirect, which an airline

has largely no control over, are the two key notions behind IDS games. In [61] the

authors hypothetically assume there is a new technology that could determine with

absolute certainty whether or not a bag has an explosive device in it or not. Using

real airline travel data they estimate the risk each airline would face from transfers.

With these estimates, they experimentally show that all airlines would converge to

not investing in the new security. The authors also show, that if the 3 largest airlines

were forced to invest in the security, all airlines would converge to investing in the

security. Thus, they show that the equilibrium behavior of this network based game
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exabits a tipping phenomenon based on which airlines invest. This is another result

which relates the topology of the graph to structure of equilibria. However, in this

thesis we seek to relate structure to equilibrium in more than just one experimentally

derived graph. We wish to give theoretical results that relate topology to equilibrium

in large families of graphs.

In [66] the authors consider a game theoretic model with n players, where players

can communicate with other players according to a random graph G generated via

the Gn,p model of Erdős and Rényi [13] . They say an action profile can be blocked

by a coalition of players C if the players in the coalition can deviate from the profile

and all earn a higher payoff for doing so. They analyze one setting where a coalition

may form if all its members form a clique in the communication graph G. They show

that if p = Ω(1/ log n), then any non-Pareto optimal allocation will almost surely be

blocked. They also analyze a setting where a coalition may form if any 2 members

have a neighbor in common that is also in the coalition. Here they show that if

p = Ω(1/
√

n), then any non-Pareto optimal allocation will almost surely be blocked.

This model differs from those we consider because it allows for situations where

any players action can affect the payoff of any other player, whereas we consider

models where the payoff of one player can only be affected by players in its local

neighborhood. In spite of this, the authors prove that the graphical restriction on

which coalitions can be formed influences which types of equilibria could result.

The work on cooperative transferable utility games lies in a similar vain as the

work described in the previous paragraph. Transferable utility games consist of

n players and a characteristic function ν : 2n → ℜ. Each player can choose to

cooperate or not. Those that do form a coalition S, and ν(S) is the total payoff that

the coalition receives. As in the work mentioned previously by [66], communication

is often restricted to occur over a fixed undirected graph. Players can only choose to

cooperate if they are connected via this communication graph. The work of Borm et

al. [15] surveys the literature that relates the topology of this communication graph
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to the payoff of the coalition. This is another example of a class of games where each

players action can affect each other players payoff, but the structure of the coalition

is governed by a graph. In this work, we analyze models where each players action

can only affect the payoffs of the others in their neighborhood.

In [77] the authors describe an alternate way of interpreting Nash equilibrium. In

this alternate formulation each player corresponds to a population of agents, where

each agent always plays one pure strategy of the player. The relative frequency of the

agents in a population corresponds to the mixed strategy of that player. The game

is played by choosing an agent uniformly at random from each population to play.

An equilibrium of this game corresponds to a Nash equilibrium of the underlying

game, which has 1 player per population choosing a mixed strategy corresponding

to the frequency agents. The authors then consider what happens if the agents are

not necessarily chosen uniformly at random from each population. Let µ denote a

distribution over the populations that governs which agents meet. This defines a

“local-interaction” game because agent 1 of population 1 might meet agent 1 of pop-

ulation 2 but never meet agent 2 of population 2. The authors show that any Nash

equilibrium of the local-interaction game corresponds to a correlated equilibrium of

the underlying game, and vice versa. They show that pattern of local interactions

defined by µ can be encoded in the signal that the players receive in the correlated

equilibrium. This is a different type of local interaction than we consider in this

work, however, the authors do relate the topology of the local interaction to the

signals given to players which shapes the structure of the equilibria.

Finally, we briefly describe algorithms that make use of the topology of graphical

games to compute equilibria. For a much more extensive introduction into this area

we refer the reader to [59]. In [60] the authors give two algorithms that compute Nash

equilibria for graphical games with a tree topology. The first runs in polynomial time

and outputs a compact representation of an approximation of every Nash equilibrium,

and the second runs in exponential time and outputs all Nash equilibrium exactly.
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This was later generalized in [87] to general graphs with cycles, although the authors

were only able to give an experimental analysis of the running time. In [33] the

authors give a polynomial time algorithm for computing Nash equilibria in graphs

where the maximum degree is 2. It is based on the TreeNash algorithm of [60].

On the lower bound side, [46, 26] show that finding the Nash equilibria of graphical

games where maximum degree node has degree at least 3 is PPAD-complete and thus

is likely to be intractable. In [33] the authors extend this result to show there exists

a constant k such that it is PPAD-complete to find a Nash equilibria of a graphical

game where the graph has pathwidth k and every node has degree at most 3. This

shows that the computability of graphical games is very sensitive to the topology of

underlying graphs.

The structure of a graphical game can also be exploited to compute correlated

equilibria. In [54] the authors show if G is the underlying graph of a graphical game,

then there exists a Markov network that is almost identical to G, that represents

every correlated equilibria of a graphical game. They then go on to exploit this

relationship to give a polynomial time algorithm for computing correlated equilibria

in graphical games where the underlying graph is a tree. Subsequently, [90, 89] gave

algorithms that can not only compute correlated equilibria in a more general class

of games with a compact representation, but also allow for optimization over which

correlated equilibria is computed.
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Chapter 2

Economic Properties of

Social Networks

2.1 Introduction

There is a long history of research in economics on mathematical models for cen-

tralized exchange markets, and the existence and properties of their equilibria. The

work of [4], who established equilibrium existence in a very general commodities ex-

change model, was certainly one of the high points of this continuing line of inquiry.

The origins of the field go back at least to [42]. Almost all of the models studied in

this line of research assume that each player is able to trade with each other player.

While there has been relatively recent interest in network models for interaction

in economics (see [51] for a good review), it was only quite recently that a network

or graph-theoretic model that generalizes the classical Arrow-Debreu and Fisher

models was introduced [55]. In this model, the edges in a network over individual

consumers (for example) represent those pairs of consumers that can engage in direct

trade. As such, the model captures the many real-world settings that can give rise

to limitations on the trading partners of individuals (regulatory restrictions, social

connections, embargoes, and so on). In addition, variations in the equilibrium payoff
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or wealth of a player can arise due to the topology of the network: certain individuals

may be relatively favored or cursed by their position in the graph.

In a parallel development over the last decade or so, there has been an explosion

of interest in what is broadly called social network theory — the study of apparently

“universal” properties of natural networks (such as small diameter, local clustering

of edges, and heavy-tailed distribution of degree), and statistical generative models

that explain such properties. When viewed as economic networks, the assumptions

of individual rationality in these works are usually either non-existent, or quite weak,

compared to the Arrow-Debreu or Fisher models.

In this chapter we will first formally define our network-based economic exchange

model, and then we will analyze how the topology of the underlying network affects

the structure of the equilibria. First, we completely characterize when there will and

will not be equilibrium wealth variation for any graph. Second, we describe a local

approximation method that allows one to compute global approximate equilibrium

wealth using only local regions of the network. Then we will analyze our model

in the modern light of social network theory. We are particularly interested in

the interaction between the statistical structure of the underlying network and the

variation in wealth at equilibrium. We quantify the amount of wealth variation that

that certain generative models (such as the preferential attachment model of network

formation [95, 8] are capable of. This will give the first graph-theoretic explanation of

the heavy-tailed distribution of wealth in the real world first observed by Pareto [91].

We also show that in the preferential attachment model, prices computed from only

local regions of a network yield strikingly good estimates of the global prices.

2.2 Related Work

The inspiration for this work comes from [55]. There the authors introduced the

notion of a graphical economy which combines networks with game theoretic models
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of markets. The authors of that work give very general conditions for the existence

of equilibria and algorithms for computing such equilibria. (We refer the reader

to Section 1.5 for more details about this work.) But, the authors did not tackle

the question of how the topology of the underlying network affects the equilibrium

payoffs of the players. This is the main question this chapter addresses.

There are 2 specific works from the economics literature that are most closely

related to this chapter. First, Corominas-Bosch [25] recently analyzed a similar

model to the one we consider in this chapter. Her model consists of a bipartite

network with buyers on one side and sellers on the other. Each buyer starts off with

1 unit of cash which is divisible, and each seller starts off with 1 unit of the same

indivisible good. Trade occurs via a bargaining mechanism (as opposed to the market

mechanism we consider) that proceeds in rounds. During the odd numbered rounds

each seller proposes a price to the buyers in its neighborhood, and the buyers choose

whether or not to accept the price of one seller they are connected to. Similarly,

during the even numbered rounds each buyer proposes a price to the sellers in its

neighborhood, and the sellers choose whether to accept the price of one buyer they

are connected to. When a price between a buyer and a seller is accepted, the two

trade and are removed from the graph, the process then continues. Due to this

bargaining mechanism, the equilibrium graphs can be decomposed into 3 types of

subgraphs (those where the number of buyers is greater than, equal to, and less

than the number of sellers). Moreover, each type of subgraph has a very simple and

precise equilibrium price structure. For example in the case of a subgraph with a

greater number of sellers than buyers, all sellers earn an equilibrium price of 0 and all

the buyers get the good for free. While, this result does relate network topology to

structure of the equilibrium, in this chapter we will show that the range in prices in

the market mechanism we consider will exhibit a much richer structure. Furthermore,

we will quantify that rich structure in terms of topological and statistical properties

of the network.
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Second, Kranton and Minehart [72] also analyze a model which consists of a

bipartite network with buyers on one side and sellers on the other. Each seller has

an initial endowment of 1 indivisible unit of a good. Each buyer demands 1 unit of

that good and has a valuation for it. The key structure that underlies the results

in this work is the notion of an opportunity path. For any feasible allocation A, an

opportunity path starts at a buyer and ends at some other buyer and consists edges

that alternate between edges over which trade did occur according to A, and edges

over which trade did not occur according to A. The authors show that if a buyer

buys a good, the price it pays can be at most the price paid by buyers along the

opportunity path. The authors then use this result to give bounds on the equilibrium

prices in terms of the valuations of the nodes along the opportunity path. In this

chapter, however, we prove a slightly different type of result. We will prove bounds

that quantify the equilibrium payoffs of the players in purely terms of the node and

edge structure of the graph (and not of the valuations or the utility functions of the

players).

2.3 Bipartite Exchange Economies

A bipartite exchange economy consists of a bipartite graph G = (V = B ∪ S, E),

where nodes on one side of the bipartition represent buyers (B), and nodes on the

other side of the bipartition represent sellers (S), and all edges in E are between

B and S. There are two abstract commodities that, without loss of generality, we

shall call cash and wheat. Buyer i has an infinitely divisible endowment of 1 unit of

cash to trade for wheat; seller j has an infinitely divisible endowment of 1 unit of

wheat to trade for cash. Buyers have utility x for x units of wheat and 0 utility for

cash; similarly, sellers have utility x for x units of cash and 0 utility for wheat1. The

1The exact form of these functions is irrelevant as long as each party has non-zero and increasing

utility only for the “other” good.
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semantics of the graph are as follows: buyer i can trade with seller j if and only if

there is an edge between i and j.

Before describing the standard notion of equilibrium for this model, we note

that it is a significant and deliberate specialization of the model first considered

in [55], which among other features permitted varying initial endowments and utility

functions, as well as an arbitrary number of commodities. Our interests here are in

the structures that arise purely from “network effects”, as opposed to those arising

from imbalances in supply and demand, variations in consumer utilities, and so on.

Thus, we make the endowments and utility functions of the players identical so we

can ascribe any variation in the equilibria solely to variation in the underlying graph.

We now describe our notion of exchange equilibrium for a bipartite exchange

economy. Let ωs
j denote the exchange rate (or price), in terms of cash per unit

wheat, that seller j is offering. Similarly, let ωb
i denote the exchange rate, in terms

of wheat per unit cash, that buyer i is offering. Let xij denote the amount of seller

j’s wheat that buyer i consumes. A set of exchange rates, {ωb
i} and {ωs

j}, and

consumption plans, {xij}, constitutes an exchange equilibrium for G if the following

two conditions hold [56]:

1. The market clears, i.e. supply equals demand. More formally, for each seller

j,
∑

i∈N(sj) xij = 1 where N(i) = {j|(i, j) ∈ E}. The value of 1 on the right

hand side represents j’s endowment.

2. For each buyer i, their consumption plan {xij}j is optimal. By this we mean

that according to the consumption plan, buyers only buy from the sellers in

their neighborhood offering the best exchange rate. That is, xij > 0 if and only

if ωs
j = minsk∈N(bi) ωs

k.

We note that the role of buyers and sellers in a bipartite exchange economy is com-

pletely symmetric. Given buyer i’s exchange rate, ωb
i , one can determine how much

of buyer i’s cash seller j consumes. Thus, one could equivalently define Item 1 above
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from the point of view of the buyers and Item 2 above from the point of view of the

sellers. In this model, an exchange equilibrium for G always exists if each seller has

at least one neighboring buyer [32]. Furthermore, the equilibrium exchange rates are

unique, and at equilibrium, if xij > 0 then ωs
j = 1/ωb

i .

Since each seller starts off with 1 unit of wheat and his exchange rate2 is in terms

of cash per unit wheat, at exchange equilibrium each seller will earn exactly his

exchange rate in dollars. Thus we will also call each sellers exchange rate ωs
j her

wealth. Similarly, at exchange equilibrium each buyer will earn exactly his exchange

rate in wheat, so we call the buyers exchange rate ωb
i her wealth as well. We say

there is no wealth variation at exchange equilibrium of a bipartite exchange economy

when the wealth of all of the sellers are equal and the wealth of all of the buyers are

equal. We say there is wealth variation at exchange equilibrium if some buyers earn

a different amount of wealth than other buyers and/or some sellers earn a different

amount of wealth than other sellers. In a bipartite exchange economy where the

number of buyers and sellers are equal, at exchange equilibrium the average wealth

will be 1, so some player has wealth less than 1 if and only if some other player has

wealth greater than 1.

2.4 Results: General Networks

In this section we will describe the results that relate the topology of an arbitrary

graph or network to the structure of exchange equilibrium. First, we will describe

our results that relate topology to wealth variation. Second, we will show how one

can use the graphical nature of our model to compute a local approximation of global

equilibrium wealth. We will use these results later in Section 2.6 where we analyze

the relationship between topology and equilibrium specifically for social networks.

2We will also call a sellers exchange rate her price.
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2.4.1 Wealth Variation

In this subsection we prove the following theorem that completely characterizes when

there is wealth variation in a bipartite exchange economy.

Theorem 2.4.1. There is no wealth variation in a bipartite exchange economy if

and only if there is a perfect matching in the underlying graph.

From the statement of this theorem one can immediately see there is a strong

connection between network topology and equilibrium structure in a bipartite ex-

change economy. We use the following two lemmas to prove this theorem. In doing

so, we use the following notation. For a graph G = (V, E), and X ⊆ V we let

N(X) = {y ∈ V |(x, y) ∈ E for some x ∈ X}.

Lemma 2.4.1. If for all subsets of sellers S, |N(S)| ≥ |S|, then there is no price

variation, i.e. all seller prices are equal to 1.

Proof. Let us proceed with a proof by contradiction by assuming that all seller prices

are not equal to 1. This implies that there must exist some sellers with equilibrium

price less than 1 (if all equilibrium prices were greater than 1 than the market would

not clear). Let S be the set of all sellers with price less than 1. All buyers in N(S)

will buy only from sellers in S since the prices outside of S are strictly greater (they

are 1 or larger). Hence, the clearance condition implies that all the |N(S)| buyers will

spend all of their money within S. By assumption |N(S)| ≥ |S|, thus the pigeonhole

principle shows there must be at least one seller in S who earns at least $1. This

contradicts the definition of S.

The following lemma provides a converse to Lemma 2.4.1.

Lemma 2.4.2. If there exists a subset of sellers S, such that |N(S)| < |S|, then

there is price variation, i.e. not all seller prices will be equal.

Proof. Due to the market clearing condition, each of sellers in S will sell all of their

1 unit of good. Since the sellers of S are only connected to those buyers in N(S),
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they will receive at most N(S) dollars which will be allocated to the |S| sellers in

some manner. Thus, there must be at least one element of S that gets at most

|N(S)|/|S| < 1 dollars. Since there is a seller that gets strictly less than 1 dollar,

by the market clearing condition, there must be some other seller that gets strictly

greater than 1 dollar. Thus, there is price variation.

Combining Lemmas 2.4.1 and 2.4.2 we get the following theorem.

Lemma 2.4.3. A necessary and sufficient condition for there to be no seller price

variation, i.e. for all seller prices to be equal to 1, is that for all subsets of sellers S,

|N(S)| ≥ |S|.

This can be viewed as an extremely weak version of standard expansion prop-

erties well-studied in graph theory and theoretical computer science — rather than

demanding that neighbor sets be strictly larger, we simply ask that they not be

smaller. A symmetric argument can be made to show that there will be no wealth

variation among the buyers, if for all subsets of buyers B, |N(B)| ≥ |B|. One

can further show that for large n, the probability that a random graph (for any edge

probability p > 0) obeys this weak expansion property approaches 1. In other words,

in the Erdős-Rényi model model, there is no variation in price — a stark contrast

to the preferential attachment results we will show in Section 2.6.2. Next we state

Hall’s Theorem taken from [24].

Theorem 2.4.2. There exists a perfect matching in a bipartite graph G = (L∪R, E)

if and only if |A| ≤ |N(A)| for every subset A ⊆ L.

Combining Lemma 2.4.3 and Theorem 2.4.2 we get Theorem 2.4.1.

2.4.2 Local Approximation Method

This section describes a method for approximating the wealth a player would earn

at exchange equilibrium which only uses the local neighborhood of that player in
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the bipartite exchange economy. We will present a rather intuitive “monotonicity”

lemma, which states that if the supply of goods in a graphical economy is decreased,

or the cash endowments are increased, then the equilibrium prices increase or re-

main the same. The vehicle for proving this lemma is the algorithm of Devanur et

al. [27]. This algorithm computes the market clearing equilibrium of a graphical

Fisher economy which is a more general type of economy than a bipartite exchange

economy. Next we will introduce the graphical Fisher economy, and see how it relates

to the bipartite exchange economy. Then we will state and prove the monotonicity

lemma. Finally, we will state and prove the frontier bound which will exhibit our

approximation method.

Market Economies on Networks

At a high level the graphical Fisher model is more general than a bipartite exchange

economy for the following reasons.

1. A bipartite exchange economy requires an equal number of buyers and sellers,

whereas the graphical Fisher model allows for an unequal number of buyers

and sellers.

2. A bipartite exchange economy allows for only two goods in the economy, cash

and wheat. The graphical Fisher model allows for multiple goods.

3. In a bipartite exchange economy the initial endowments for both buyers and

sellers are uniform. In the graphical Fisher model, the players can have variable

endowments.

4. In a bipartite exchange economy buyers are assumed to have utility only for

wheat. In the graphical Fisher model buyers are assumed to have linear utility

functions over the various goods the sellers sell.

More formally, we assume without loss of generality that each seller sells only

one of the available goods. That is, seller j has an initial endowment of gj units
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of an infinitely divisible good j. Buyer i has an initial endowment of ei units of

an abstract, infinitely divisible good which we call cash. Furthermore, each buyer is

assumed to have a utility function that is is linear in the amount of goods consumed.

Let uij ≥ 0 denote the utility derived by i on obtaining a single unit of good j. If i

consumes xij amount of good j, then the utility i derives is
∑

j uijxij.

Next, we give the definition of an equilibrium for the graphical Fisher model.

A set of prices {pj} and consumption plans {xij} constitutes a market clearing

equilibrium if the following two conditions hold:

1. The market clears, i.e. supply equals demand. More formally, for each seller

j,
∑

i∈N(sj) xij = gj where N(i) = {j|(i, j) ∈ E}.

2. For each consumer i, their consumption plan {xij}j is optimal. By this we mean

that the consumption plan maximizes the linear utility function of i, subject

to the constraints that buyers only buy from sellers in their neighborhood, and

the total cost of the goods purchased by i is not more than the endowment ei.

A market clearing equilibrium always exists if each seller j has a buyer in its neigh-

borhood who has a positive initial endowment and derives nonzero utility for good

j — that is, ei > 0 and uij > 0 for some i ∈ N(j). Furthermore, the equilibrium

prices are unique [32].

With the definition of a graphical Fisher economy in hand, we can now state

and prove the Monotonicity Lemma. Intuitively, his result shows that in a graphical

Fisher economy, if the supply of goods in the economy increases, the equilibrium

prices decrease, and if the amount of money in the economy increases the equilibrium

prices increase. The statement of the lemma requires that the endowments be strictly

greater than 0, this is to ensure that equilibria exist and are unique via the result of

Eisenburg and Gale [32].

Lemma 2.4.4. (Monotonicity) Let E and E ′ be two graphical Fisher economies with

the same number of buyers and sellers and identical linear utility functions. If for
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all goods j and buyers i, we have 0 < g′
j ≤ gj and e′i ≥ ei > 0 (where the primes

denote quantities for economy E ′), then the market clearing equilibrium prices satisfy

p′j ≥ pj for all j.

Proof. To prove this, we use properties of a recent algorithm for computing market

clearing equilibria in the graphical Fisher model [27], which we now describe. The

algorithm is an iterative scheme in which prices {p̃j} are increased at every iteration,

until a market clearing equilibrium is reached. Importantly, the algorithm can be

initialized to any prices which obey the following property, which is referred to as

the “Invariant” in [27]3. Define the “bang per buck” for buyer i consuming good j

at price p̃j as uij/p̃j. We say that the Invariant holds at prices {p̃j} if the buyers

have enough cash to purchase all the goods in the market, while only purchasing

goods which maximize their bang per buck (though the buyers may have left over

cash after this purchase). It is only optimal for buyer i to purchases those goods

which have maximal bang per buck.

Since the algorithm only increases the prices, to prove the lemma, it suffices to

show that we can initialize this algorithm, when given input E ′, to the equilibrium

prices, {pj}, of E. To show that such an initialization is sound, we only need to

show that the prices {pj} satisfy the Invariant with respect to E ′. To show this,

first note that since these prices are a market clearing equilibrium in E, then the

buyers can use their cash endowments of {ej} to clear an amount of goods {gj},
while only purchasing goods which maximize their bang per buck. Since the utility

functions in E and E ′ are identical, each good that maximizes buyer i’s bang per

buck at equilibrium with respect to E, also maximizes buyer i’s bang per buck upon

initialization of the algorithm on E ′. Thus, the buyers in E ′ can use larger cash

endowments of {e′j} to clear a smaller amount of goods {g′
j}, while only purchasing

goods which maximize their bang per buck .

3Devanur et al. [27] choose a particular initialization, but the algorithm is correct for any choice

of initial prices which obey the Invariant.
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Next, we present a rather intuitive “frontier” bound, which implies a method in

which we can find upper and lower bounds on the equilibrium prices in a graphical

Fisher economy using only local computations. Some definitions are required to state

the theorem. Let G = (V = B ∪ S, E) be a graphical Fisher economy. First, note

that any subset V ′ of buyers and sellers defines a natural induced economy, where the

induced graph G′ consists of all edges between buyers and sellers in V ′ that are also

in G. We say that G′ has a buyer (respectively, seller) frontier if on every (simple)

path in G from a node in V ′ to a node outside of V ′, the last node in V ′ on this path

is a buyer (respectively, seller).

Theorem 2.4.3. (Frontier Bound) Let G = (V = B ∪ S, E) be a graphical Fisher

economy. If V ′ has an induced subgraph G′ with a seller (respectively, buyer) frontier,

then the market clearing equilibrium price of any good j in the induced economy on

V ′ is a lower bound (respectively, upper bound) on the market clearing equilibrium

price of j in G.

Proof. We prove the lower bound for the seller frontier case. The upper bound

follows by a symmetric argument. Let S ′ be the set of sellers on the frontier of

G′. Let B′ be the set of buyers “on the other side” of the frontier, that is B′ =

N(S ′)∩ (V \ V ′). Next, we will modify the initial cash endowments of the buyers in

B′. Fix any ǫ > 0. For each buyer i ∈ B′ set ei to ǫ/n, and let E denote this new,

modified graphical Fisher economy. By the Monotonicity Lemma (Lemma 2.4.4),

the equilibrium wealth4 of each seller s in E, denoted ωE
s , is a lower bound on the

equilibrium wealth of s in G, denoted ωG
s .

Consider a seller s ∈ G′. The equilibrium wealth of s in E is composed of cash

from buyers in G′, and cash from buyers in B′. Let ωG′

s denote the total amount of

cash seller s gets from buyers in G′. Similarly, let ωB′

s denote the total amount of

cash seller s gets from buyers in B′. Thus, ωG′

s + ωB′

s = ωE
s ≤ ωG

s . Since s can trade

4Recall that since seller s has an initial endowment of 1 unit of wheat, it’s equilibrium wealth

is the same as it’s equilibrium price.
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with at most n buyers in B′, wB′

s ≤ nǫ/n = ǫ. Since ǫ is chosen arbitrarily ωB′

s ≤ 0.

Thus ωG′

s ≤ ωG
s .

This theorem implies a simple price upper bound: the price commanded by any

seller j is bounded by its degree d. We will see that degree alone is a fairly poor

approximation of an individual sellers equilibrium price in Section 2.6.3. We will

also see how fast the upper and lower bounds converge to each other.

2.5 Generative Models for Social Networks

The simplest generative model for the bipartite graph G might be the random graph,

in which each edge between a buyer i and a seller j is included independently with

probability p. This is simply the bipartite version of the classical Erdős-Rényi model

[13].

Many researchers have sought more realistic models of social network formation,

in order to explain observed phenomena such as low diameter and heavy-tailed degree

distributions (see for example [8, 103, 69, 70, 20]). We now describe a slight variant

of the preferential attachment model [79] for the case of a bipartite graph. We

start with a graph in which one buyer is connected to one seller. At each time

step, we add one buyer and one seller as follows. With probability α, the buyer is

connected to a seller in the existing graph uniformly at random; and with probability

1 − α, the buyer is connected to a seller chosen in proportion to the degree of the

seller (preferential attachment). Simultaneously, a seller is attached in a symmetric

manner: with probability α the seller is connected to a buyer chosen uniformly

at random, and with probability 1 − α the seller is connected under preferential

attachment. The parameter α in this model thus allows us to move between a pure

preferential attachment model (α = 0), and a model closer to classical random graph
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theory (α = 1), in which new parties are connected to random extant parties5.

Note that the above model always produces trees, since the degree of a new

party is always 1 upon its introduction to the graph. We thus will also consider a

variant of this model in which at each time step, a new seller is still attached to

exactly one extant buyer, while each new buyer is connected to ν > 1 extant sellers.

The procedure for edge selection is as outlined above, with the modification that

the ν new edges of the buyer are added without replacement — meaning that we

resample so that each buyer gets attached to exactly ν distinct sellers. The main

purpose of the introduction of ν is to have a model capable of generating highly

cyclical (non-tree) networks, while having just a single parameter that can “tune”

the asymmetry between the (number of) opportunities for buyers and sellers. There

are also economic motivations: it is natural to imagine that new sellers of the good

arise only upon obtaining their first customer, but that new buyers arrive already

aware of several alternative sellers.

In the sequel, we shall refer to the generative model just described as the bipartite

(α, ν)-model. We will use n to denote the number of buyers and the number of sellers,

so the network has 2n vertices. In the following section, we provide results on the

statistics of these networks. In Section 2.6 we will use these results to relate the

statistical properties of these graphs to the structure of the equilibria.

2.5.1 Statistical Properties of the Bipartite (α, ν)-Model

In this subsection we will analyze properties of the degree distribution of the sellers

in the bipartite (α, ν)-model. We will later use these properties along with the

Frontier Bound (Theorem 2.4.3) to bound the equilibrium wealth distribution and

the amount of wealth variation. Let Y (j, n) denote the degree of the jth seller (in

5We note that α = 1 still does not exactly produce the Erdős-Rényi model due to the incremen-

tal nature of the network generation: early buyers and sellers are still more likely to have higher

degree.
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order of arrival) at time n, and let yj,n := E[Y (j, n)]. Let γ and β be defined as

follows,

γ :=
αν

β
, β := (1− α)

ν

1 + ν + o(1)
.

Lemma 2.5.1 will show that the o(1) term in the denominator of β is an artifact of

each new node attaching to ν existing nodes chosen via sampling without replace-

ment. The following two lemmas, when combined, show that for any value of j,

limn→∞
Y (j,n)

γ·(n/j)β = 1.

Lemma 2.5.1. For any vale of j, as n→∞, the sequence of (0,∞)-valued random

variables,

{

Y (j, n)

γ · (n/j)β

}

have means 1 + o(1).

Proof. We will show that

yj,n := E[Y (j, n)] = (γ + O(1/j))(n/j)β .

Fix j and set Y (n) = Y (j, n). The total number of edges after time n is (1 + ν)n−
ν(ν + 1)/2. From time n to n + 1, one of the ν additional edges is attached to seller

j with probability

Pr(1st edge attaches to j) +
ν
∑

i=2

Pr(ith edge attaches to j | edges 1, . . . , i− 1 did not attach to j)

=
ν
∑

i=1

(1− α)Y (n)

(1 + ν)(n− ν/2)−∑i−1
k=1 dn+1

k

+
ν
∑

i=1

α

n− (i− 1)
. (2.1)

Here dn+1
k denotes the degree of the existing node that the kth edge attaches to

during the n + 1st timestep. Recall that in this model new edges are attached to

existing nodes chosen via sampling without replacement. The model of Flaxman

et al. [43] analyzes the maximum degree node in an identical model except using

sampling with replacement. Since sampling with replacement can only increase the

number of edges attached to the maximum degree node at each time step, we can
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use Theorem 1.1 of Flaxman et al. [43] to show that the maximum degree in the

bipartite(α, ν) model is o(n). Thus Equation 2.1 becomes

(1− α)
νY (n)

(1 + ν + o(1))(n− ν/2)
+ α

ν

n− O(1)
. (2.2)

Letting yn denote E[Y (n)] results in,

yn+1 = yn

(

1 + (1− α)
ν

(1 + ν + o(1))(n− ν/2)

)

+ α
ν

n− O(1)
.

Consequently, we have the formula

yn = yj

n−1
∏

k=j

(

1 +
β

k − ν/2

)

(2.3)

+
n−1
∑

r=j

α
ν

r − O(1)

n−1
∏

k=r+1

(

1 +
β

k − ν/2

)

.

Next we will use the following estimate in Equation 2.3.

n−1
∏

k=j

(

1 +
β

k − ν/2

)

= exp





n−1−ν/2
∑

k=j−ν/2

log(1 + β/k)



 (2.4)

= exp





n−1−ν/2
∑

k=j−ν/2

β/k + O(1/k2)



 (2.5)

= exp (β log n− β log j + O(1/j)) (2.6)

= (n/j)β(1 + O(1/j)) (2.7)

Equation 2.5 comes from the Taylor series expansion of log(1 + x). Equation 2.6

uses the estimate
∑n

i=1 1/i = log n + γ + O(1/n), where γ is Euler’s constant, along

with applying the Euler-Maclaurin formula to the O(1/k2) term. Equation 2.7 uses

the Taylor series expansion of ex. Next, we use the estimate in Equation 2.7 in

Equation 2.3. Then we apply the Euler-Maclaurin formula to the summation to

complete the lemma.

yn = (1 + O(j−1))



yj
nβ

jβ
+ ανnβ

n−1
∑

r=j

r−β−1





= (1 + O(j−1))

(

yj +
αν

β

)

nβ

jβ
. (2.8)
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To state the next lemma we will need the following definition.

Definition 2.5.1. A sequence of real valued random variables {Xn}∞n=1 is tight if for

all ǫ > 0 there exists an Mǫ > 0 such that for all n, Pr(|Xn| ≥Mǫ) < ǫ.

Lemma 2.5.2. For any value of j, as n → ∞, the sequence

{

Y (j, n)

γ · (n/j)β

}

is tight

as a sequence of (0,∞)-valued random variables.

Proof. We will show that log(yj,n/Y (j, n)) is almost surely bounded, which implies

that the sequence {Y (j, ·)} is tight and that there is a δ such that for all n, Y (j, n) >

δyj,n with probability at least δ. Observe first that the probability of buyer (n + 1)

attaching to seller j may be bounded below by ignoring the contribution from the

α chance of sampling uniformly, and by sampling with replacement on edges not

adjacent to seller j but without replacement for seller j. Again, let Y (n) = Y (j, n)

for some fixed value of j and let yj = E[Y (n)]. This leads to

Pr(Y (n + 1) > Y (n)) ≥ (1− α)νY (n)

(1 + ν)n
−O

(

Y (n)2

n2

)

.

Now define Zn := (nβ/jβ)(yj/Y (n)). Now we may estimate

Z−1
n E(Zn+1 | Zn) =

(n + 1)β

nβ
E

(

Y (n)

Y (n + 1)
| Y (n)

)

=
(n + 1)β

nβ
E

(

Y (n + 1)− I{Y (n+1)>Y (n)}

Y (n + 1)
| Y (n)

)

=

(

1 +
β

n
+ O

(

1

n2

)

)(

1− Pr(Y (n + 1) > Y (n) | Y (n))

Y (n + 1)

)

≤
(

1 +
β

n
+ O

(

1

n2

)

)

[

1−
(

β
Y (n)

n
+O

(

Y (n)2

n2

))(

1

Y (n)
− 1

Y (n)(Y (n) + 1)

)]

= 1 +
β

n
− β

n
+ O(n−2) +

β

nY (n)
+ O

(

Y (n)

n2

)

.

= 1 + O

(

Y (n)

n2

)

+ O

(

1

nY (n)

)

.

Let pn = Pr(Yn+1 > Yn). By Line 2.1 we know that pn = Θ(Y (n)/n). Since

each seller attaches to one buyer when it is added to the graph, Y (n) ≥ 1. This
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implies that pn ≥ c/n for some constant c > 0. Thus we can apply a sharper version

of the Borel-Cantelli lemma [31] and conclude that Yn ≥ c′ log n, for some constant

c′ > 0. This, in turn, implies that pn ≥ c log n/n. Again applying the stronger

version of Borel-Cantelli shows that Y (n) =
∑n

i=1 pi ≥
∑n

i=1 c′ log n/n = Ω(log2 n).

By Lemma A.0.1, almost sure boundedness of log Zn now follows from almost sure

summability of n−1Y (n)−1 and n−2Y (n).

One further extension we need is proved along entirely analogous lines, so we

relegate its proof to the appendix (see Section A).

Lemma 2.5.3. There are constants cν,α,p such that for all n, j,

E[Y (n)p] ≤ cν,α,pE[Y (n)]p = O

(

n

j

)pβ

.

2.6 Results: Social Networks

In this section we consider bipartite exchange economies where the underlying graph

is generated via the bipartite (α, ν)-model. We will provide two main theorems which

describe the relationship between equilibrium wealth and statistical properties of the

network. First, we will state and prove a result that shows the distribution of wealth

is upper bounded by a power law distribution. Second, we will give a result that

bounds the wealth variation (ratio of maximum to minimum wealth) in terms of the

parameters α and ν. We will also support these theorems with simulations which

exhibit how tight the bounds our theorems provide are. In these simulations, equi-

librium computations were done using the algorithm of [27] (or via the application of

this algorithm to local subgraphs). We note that it was only the recent development

of this algorithm and related ones that made possible the simulations described here

(involving hundreds of buyers and sellers in highly cyclical graphs). However, even

the speed of this algorithm limits our experiments to networks with n = 250 if we

wish to run repeated trials to reduce variance. Many of our results suggest that
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the local approximation method, discussed in Section 2.6.3, may be far more effec-

tive. Figure 2.1 and its caption provide an example of a bipartite exchange economy

generated by the bipartite (α, ν)-model, along with a discussion of its equilibrium

properties.

2.6.1 Wealth Distribution

Theorem 2.6.1. In the bipartite (α, ν)-model, the proportion of sellers with wealth

greater than ω is O(ω−1/β). For example, if α = 0 (pure preferential attachment)

and ν = 1, the proportion falls off as 1/ω2.

Proof. Fix n and consider the proportion of sellers whose degree exceeds some value,

ω. Let j solve yj,n = ω, by Lemma 2.5.3 we get that j = O(nω−1/β). It follows

from Lemma 2.5.2 that a positive fraction of sellers arriving by time δj will have

degree exceeding ω, proving that the proportion of sellers with degrees exceeding ω

is Ω(ω−1/β) as soon as n is big enough so that nω−1/β →∞. On the other hand, for

k > j we have

Pr(Y (k, n) ≥ ω) ≤ E[Y (k, n)p]

ωp

= O
(

j

k

)βp

by Lemma 2.5.3. Choosing p > β−1 and summing over k shows that the expected

number of these sellers with degrees exceeding ω is O(j). This shows that the

proportion of sellers at time n whose degree is exceeds ω is Θ(ω−1/β). Applying the

Frontier Bound (Theorem 2.4.3) completes the proof.

We do not yet have such a closed-form lower bound on the cumulative price

distribution. However, the price distributions seen in large simulation results do

indeed show power-law behavior. Interestingly, this occurs despite the fact that

degree is a poor predictor of individual seller price, as we shall see in Section 2.6.3

Figure 2.2 shows empirical cumulative price and degree distributions on a loglog scale.
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Figure 2.1: Sample bipartite exchange economy generated by the bipartite (α =
0, ν = 2)-model. Buyers and sellers are labeled by ‘B’ or ‘S’ respectively, followed
by an index indicating the time step at which they were introduced to the network.
The solid black edges in the figure show the exchange subgraph — those pairs of
buyers and sellers who actually exchange currency and goods at equilibrium. The
solid yellow edges are edges of the network that are unused at equilibrium because
they represent inferior prices for the buyers, while the dotted edges are edges of
the network that have competitive prices, but are unused at equilibrium due to
the specific consumption plan required for market clearance. Each seller is labeled
with the price they charge at equilibrium. The example exhibits non-trivial price
variation (from 2.00 down to 0.33 per unit good). Note that while there appears
to be a correlation between seller degree and price, it is far from a deterministic
relation, a topic we shall examine later.
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Figure 2.2: Cumulative price and degree distributions on a loglog scale, averaged
over 25 networks drawn according to the bipartite (α = 0.4, ν = 1)-model with
n = 250. The cumulative degree distribution is shown as a dotted line, where the
y-axis represents the fraction of the sellers with degree greater than or equal to d,
and the degree d is plotted on the x-axis. Similarly, the solid curve plots the fraction
of sellers with price greater than some value w, where the price w is shown on the
x-axis. The thin sold line has our theoretically predicted slope of −1

β
= −3.33, which

shows that degree distribution is quite consistent with our expectations, at least in
the tails.
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Perhaps the most interesting finding is that the tail of the price distribution looks

linear, i.e. it also exhibits power law behavior. Our theory provided an upper bound,

which is precisely the cumulative degree distribution. This plot further confirms the

robustness of the power law behavior in the tail, for α < 1 and ν = 1.

As discussed in the introduction, Pareto’s original observation [91] was that the

wealth (which corresponds to seller price in our model) distribution in societies obey

a power law, especially in the tails. This observation has been born out in many

studies on western economies [29, 30, 84]. Since Pareto’s original observation, there

have been too many explanations of this phenomena to recount here. However,

to our knowledge, all of these explanations are more dynamic in nature (e.g. a

dynamical system of wealth exchange) and do not capture microscopic properties

of individual rationality. Here we have power law wealth distribution arising from

the combination of certain natural statistical properties of the network, and classical

theories of economic equilibrium.

2.6.2 Wealth Variation

Another quantity of interest is what we might call wealth variation — the ratio of the

wealth of the richest seller (or buyer) to the poorest seller (or buyer). The following

theorem addresses this for the case of sellers.

Theorem 2.6.2. In the bipartite (α, ν)-model, if α(ν2 +1) < 1, then the ratio of the

maximum seller price to the minimum seller price scales with number of buyers n as

Ω(n
2−α(ν2+1)

1+ν ). For the simplest case in which α = 0 and ν = 1, this lower bound is

just Ω(n).

We prove this theorem by again combining the Frontier Bound (Theorem 2.4.3)

along with the results on the statistical properties of the network.. This proof is

more involved, so we just sketch it here.
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Figure 2.3: The left panel shows the maximum to minimum seller price as function
of n (averaged over 25 trials) on a loglog scale. Each line represents a fixed value
of ν, between 1 and 4 (α = 0). Theorem 2.6.2 predicts the slopes of the lines to be
(1, 0.67, 0.5, 0.4). The estimated slopes are somewhat close: (1.02, 0.71, 0.57, 0.53).
The right panel is a scatter plot of α vs. the maximum to minimum seller price in
a graph (where n = 250). Each point represents the price variation in a specific
network generated by our model. The circles are for economies generated with ν = 1
and the x’s are for economies generated with ν = 3.

Proof. (Sketch) Let us now bound the total wealth of the first ν sellers. By Lem-

mas 2.5.1 and 2.5.2 the degrees of these sellers at time n/2 are all Θ(nβ), so when

a buyer arrives at a time between n/2 and n, the probability of one of this buyer’s

connections links to exactly the first ν sellers is Θ(nβ−1). Hence, the probability

that all of this buyer’s connections link to exactly the first ν sellers is Θ(nν·(β−1)).

Summing over the n/2 buyers shows that the total number of such buyers is, with

high probability, Θ(n1+ν·(β−1)). Deleting from this list those buyers who are later

linked by some seller removes a constant fraction of these (details omitted).

Using similar arguments as in the proof of Lemma 2.5.1, one can show the first

buyer has degree Θ(n
1−α
1+ν ). A similar argument to above shows that the number of

sellers only connected to this buyer, is Ω(n
1−α
1+ν ). Combining this with the previous

bound and applying the Frontier Bound (Theorem 2.4.3) leads to the result.
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We now provide a brief examination of how price variation depends on the pa-

rameters of the bipartite (α, ν)-model. We first experimentally evaluate the lower

bounds provided in Theorem 2.6.2. The left panel of Figure 2.3 shows the maximum

to minimum price as function of n. Recall from Theorem 2.6.2, our lower bound on

the ratio is Ω(n
2

1+ν ) (using α = 0). We conjecture that this is tight, and, if so, the

slopes of lines (in the loglog plot) should be 2
1+ν

, which would be (1, 0.67, 0.5, 0.4).

The estimated slopes are somewhat close: (1.02, 0.71, 0.57, 0.53). The overall mes-

sage is that for small values of ν, price variation increases rapidly with the economy

size n in preferential attachment.

The rightmost panel of Figure 2.3 is a scatter plot of α vs. the maximum to

minimum price in a graph. Here we see that in general, increasing α dramatically

decreases price variation (note that the price ratio is plotted on a log scale). This

justifies the intuition that as α is increased, more “economic equality” is introduced

in the form of less preferential bias in the formation of new edges. Furthermore, the

data for ν = 1 shows much larger variation, suggesting that a larger value of ν also

has the effect of equalizing buyer opportunities and therefore prices.

2.6.3 Performance of Local Approximation Method

Recall that the Frontier Bound (Theorem 2.4.3) suggests a method by which we can

do only local computations to approximate the global equilibrium price for any seller.

More precisely, for some seller j, consider the subgraph which contains all nodes that

are within distance k of j. In our bipartite setting, for k odd, this subgraph has a

buyer frontier, and for k even, this subgraph has a seller frontier, since we start from

a seller. Hence, by the Frontier Bound the equilibrium computation on the odd k

(respectively, even k) subgraph will provide an upper (respectively, lower) bound.

This provides an heuristic in which one can examine the equilibrium properties

of small regions of the graph, without having to do expensive global equilibrium

computations. The effectiveness of this heuristic will of course depend on how fast
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Figure 2.4: In these experiments, graphs were generated by the bipartite (α = 0, ν =
1) model. The value of n is given on the x-axis; the average errors (over 5 trials for
each value of k and n) in the local equilibrium computations are given on the y-axis;
and there is a separate plot for each of 4 values for k.

the upper and lower bounds tighten. In general, it is possible to create specific graphs

in which these bounds are arbitrarily poor until k is large enough to encompass the

entire graph. As we shall see, the performance of this heuristic is dramatically better

in the bipartite (α, ν)-model.

Figure 2.4 shows how rapidly the local equilibrium computations converge to the

true global equilibrium prices as a function of k, and also how this convergence is

influenced by n. It appears that for each value of k, the quality of approximation

obtained has either mild or no dependence on n. Furthermore, the regular spacing

of the four plots on the logarithmic scaling of the y-axis establishes the fact that

the error of the local approximations is decaying exponentially with increased k —

indeed, by examining only neighborhoods of 3 steps from a seller in an economy

of hundreds, we are already able to compute approximations to global equilibrium

prices with errors in the second decimal place. Since the diameter for n = 250 was

often about 17, this local graph is considerably smaller than the global. However, for

the crudest approximation k = 1, which corresponds exactly to using seller degree as

a proxy for price, we can see that this performs rather poorly. Computationally, we
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found that the time required to do all 250 local computations for k = 3 was about

60% less than the global computation, and would result in presumably greater savings

at much larger values of n.

2.7 An Experimental Illustration on International

Trade Data

We conclude with a brief experiment exemplifying some of the ideas discussed so

far. The statistics division of the United Nations makes available extensive data sets

detailing the amounts of trade between major sovereign nations6. We used a data

set indicating, for each pair of nations, the total amount of trade in U.S. dollars

between that pair in the year 2002.

For our purposes, we would like to extract a discrete network structure from

this numerical data. There are many reasonable ways this could be done; here we

describe just one. For each of the 70 largest nations (in terms of total trade), we

include connections from that nation to each of its top k trading partners, for some

integer k > 1. We are thus including the more “important” edges for each nation.

Note that each nation will have degree at least k, but as we shall see, some nations

will have much higher degree, since they frequently occur as a top k partner of other

nations. To further cast this extracted network into the bipartite setting we have

been considering, we ran many trials in which each nation is randomly assigned

a role as either a buyer or seller (which are symmetric roles), and then computed

the equilibrium prices of the resulting network economy. We have thus deliberately

created an experiment in which the only economic asymmetries are those determined

by the undirected network structure.

The leftmost panel of Figure 2.5 show results for 1000 trials under the choice

k = 3. The upper plot shows the average equilibrium price for each nation, where

6See http://unstats.un.org/unsd/comtrade
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Figure 2.5: Left Column: each nation is connected to its top 3 trading partners.
Middle Column: each nation is connected to its top 10 trading partners. Right
Column: each nation is connected to its top 3 trading partners with the members of
European Union combined into 1 nation.

the nations have been sorted by this average price. We can immediately see that there

is dramatic price variation due to the network structure; while many nations suffer

equilibrium prices well under $1, the most topologically favored nations command

prices of $4.42 (U.S.), $4.01 (Germany), $3.67 (Italy), $3.16 (France), $2.27 (Japan),

and $2.09 (Netherlands). The lower plot of the leftmost panel shows a scatterplot

of a nation’s degree (x-axis) and its average equilibrium price (y-axis). We see that

while there is generally a monotonic relationship, at smaller degree values there can

be significant price variation (on the order of $0.50).

The center panel of Figure 2.5 shows identical plots for the choice k = 10. As

suggested by the theory and simulations, increasing the overall connectivity of each

party radically reduces price variation, with the highest price being just $1.10 and

the lowest just under $1. Interestingly, the identities of the nations commanding the

highest prices (in order, U.S., France, Switzerland, Germany, Italy, Spain, Nether-

lands) overlaps significantly with the k = 3 case, suggesting a certain robustness in

the relative economic status predicted by the model. The lower plot shows that the

relationship between degree and price divides the population into “have” (degree

above 10) and “have not” (degree below 10) components.

The preponderance of European nations among the top prices suggests our final

experiment, in which we modified the k = 3 network by merging the 15 current

49



members of the European Union (E.U.) into a single economic nation. This merged

vertex has much higher degree than any of its original constituents and can be viewed

as an (extremely) idealized experiment in the economic power that might be wielded

by a truly unified Europe.

The rightmost panel of Figure 2.5 provides the results, where we show the relative

prices and the degree-price scatterplot for the 35 largest nations. The top prices are

now commanded by the E.U. ($7.18), U.S. ($4.50), Japan ($2.96), Turkey ($1.32),

and Singapore ($1.22). The scatterplot shows a clear example in which the highest

degree (held by the U.S.) does not command the highest price.
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Chapter 3

A Network Formation Game for

Bipartite Exchange Economies

3.1 Introduction

Recently there has been interest in both the computer science and economics com-

munities in network formation games. Broadly speaking, in these multiplayer games,

individuals may choose to share the cost of building a network by purchasing edges

incident on themselves. Each player’s overall utility consists of two, usually compet-

ing, components — on the one hand, the edge costs incurred by the player, and on

the other, some measure of “benefit” accrued to the player by their participation or

position in the network.

For instance, in one well-studied model [38, 1], individuals wish to minimize their

edge purchases plus the sum of their (shortest-path) distances to all other players.

Clearly there is a trade-off between these two components. Within such models

there have been studies of the structural properties of those networks that are (pure

strategy) Nash equilibria of the game, Price of Anarchy bounds, and other analyses

(see Section 3.2 for related work).

As in the example above, in much of the prior research the benefit to a player for
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participating in the network measures some notion of their centrality or connectivity

— shortest-path distances to other players, number of other players in the same com-

ponent, and so on. In this chapter we introduce and analyze a natural alternative —

namely, we view the network formed by the players as defining trading opportunities,

and measure the network benefit to a player by the wealth they accrue from those

trading opportunities.

Our point of departure is a recently introduced networked version of classical

exchange economies [55], and more specifically its specialization to bipartite buyer-

seller networks discussed in Chapter 2 (which was originally presented in [56]). In

the latter, there is an exogenously specified bipartite network between n buyers,

who each have an endowment of 1 divisible unit of an abstract commodity called

cash, and n sellers, who each have an endowment of 1 divisible unit of an abstract

commodity called wheat. Buyers have utility only for wheat and sellers only for

cash, thus ensuring mutual interest in trade. The bipartite network is viewed as

specifying all and only those pairs of buyers and sellers who may trade. Earlier

work [32, 55] established the existence of (market-clearing) equilibria in which prices

and wealths may vary across the network due to topological asymmetries, paving

the way for the later study presented in Chapter 2 in which the network is generated

according to standard stochastic (non-strategic) network generation models. There

it was established (for example) that Erdős-Rényi networks exhibit essentially no

price or wealth variation, while those generated according to preferential attachment

have unbounded wealth variation (growing as a root of the population size).

In this chapter we start with the same bipartite buyer-seller model, but now

endogenize the creation of the network to arrive at a natural network formation

game. More precisely, we assume that any buyer (respectively, seller) is free to

purchase an edge to any seller (respectively, buyer) at a cost of α. The selection of

which edges to purchase by all parties specifies an undirected bipartite network G,

and in this network each party i achieves some exchange equilibrium wealth ω(G, i).
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Our network formation game is then defined by specifying the overall utility to i as

ui = −α× e(G, i) + ω(G, i)

where e(G, i) is the number of edges in G purchased by i. We view the ui as defining a

one-shot, simultaneous move game over the 2n players, in which each player’s action

is a selection of which edges to purchase; see Section 3.3 for a formal definition and

discussion of the game.

The network formation game given by the ui is similar in broad spirit to previous

network formation games, but quite different in its details. As with previous models,

each player is balancing an outlay of wealth for edge creation (trading opportunities)

against some resulting participatory benefit in G; but now the participatory benefit

is measured in terms of wealth gained from trade rather than connectivity or shortest

paths.

Our main results provide a precise structural characterization of all the networks

G that are Nash equilibria of the game defined by the payoffs ui above. More pre-

cisely, we establish exact conditions on the amount of exchange equilibrium wealth

variation that can occur for any given values of α and n, and show that this in turn

sharply limits the connectivity structure of any Nash equilibrium network G. We

then show that these limits are tight by demonstrating specific Nash equilibrium

networks G that saturate them, thus yielding a comprehensive catalog of all Nash

equilibria. The resulting characterization also places sharp limits on the possible

exchange rates or prices that are possible. For example, while with an exogenously

specified graph, any rational exchange rate can be achieved, only very specific ex-

change rates can be achieved in a graph that is a Nash equilibrium of the formation

game — an exchange rate of 2/5, for instance, is impossible.

To our knowledge this is the first network formation game of comparable com-

plexity for which such a complete understanding of its Nash equilibria has been

given; for prior models only broad structural restrictions have been established.
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3.2 Related Work

Networks formation games have been studied in both the economics and computer

science literatures. The structure and characteristics of the networks that arise from

such games were first theoretically researched by Aumann and Myerson [5]. For a

recent and detailed review of social science and economics models see Jackson [51].

Remaining in the economics literature, but more directly related to our work,

Kranton and Minehart [73] also considered bipartite exchange economies and net-

work formation. In their models, buyer valuations are drawn from a known distribu-

tion, and the pricing mechanism used is that of a generalized English (ascending-bid)

auction. Their main interests were the study of the efficiency of the formed networks

and in showing that Nash equilibria networks are efficient; they also characterize

Nash equilibrium structure for certain values of the edge cost. In contrast to these

works, here we examine exchange equilibrium and provide a complete characteriza-

tion of all Nash equilibrium networks.

Within computer science, most works have concentrated on network formation

routing games, and the main interest has been the quality of the resulting equilib-

rium, as measured by the price of anarchy and the price of stability. We now survey

most of these results.

Anshelevich et al. [3, 2] considered a network formation game in which each

player or node is given a set of nodes to which she wishes to connect. Players are

allowed to share the cost of an edge and thus may pay for remote edges. In the first

work [3], any cost-sharing mechanism was considered and it was proven that there

is a pure approximate 3-Nash equilibrium whose cost is that of the social optimum.

An efficient algorithm to calculate an efficient 4.65-Nash was also provided. In the

second paper [2] only a fair sharing mechanism that uses the Shapely value was

considered. The price of anarchy in this setting is trivially O(n), but they discovered

that the price of stability was O(log n), and a matching lower bound was provided.

Fabrikant et al. [38], followed by Albres et al. [1], studied a game in which the
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goal of each player or node is to minimize the sum of distances to the other nodes

and his edge costs, where the cost of each edge is α. The main results of these papers

prove constant price of anarchy for almost every edge price α. A different variant

of this model was studied by Corbo and Parkes [23] where the cost of an edge was

shared equally by its endpoints; once again the main interest was in the price of

anarchy, not in network structure.

Recently, Moscibroda et al. [81] studied a similar model with applications to peer-

to-peer topologies. The goal of each player is to minimize the sum of stretches to

other nodes and the edge costs. (The stretch is defined as the distance in the formed

graph divided by an initial distance, which is decided according to the input metric).

They also study the price of anarchy and the existence of pure Nash equilibrium.

Finally, Johari et al. [53] also considered a routing-based formation game. They

considered a directed network, where each node wishes to send a given amount of

traffic to other nodes. The cost function for a node/player v is composed from three

components: the first is negative and is due to the edges purchased by v; the second

is positive and is due to the nodes reachable from v; and the third is negative and is

due to the amount of traffic that goes through v. The edges are bought by bilateral

negotiation between the endpoints. The main results of [53] provide an equilibrium

existence proof and a study of the equilibrium structure conditioned on the payoff

function.

3.3 The Network Formation Game

We begin by defining a few concepts related to the bipartite exchange economy model

studied in Chapter 2, and then extend this model to our network formation game.
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3.3.1 Bipartite Exchange Economies

In order to formally define the network formation game we consider in this chapter,

we need the definition of a bipartite exchange economy, which is given in Section 2.3.

We also need to define two additional concepts related to the graphical aspects of

exchange equilibria. First, observe that in a bipartite exchange economy an exchange

equilibrium not only determines the wealth of each player, but the consumption

plan also determines on which edges trading takes place. We call the subgraph that

consists of edges where trading occurred an exchange subgraph.

Definition 3.3.1. Let G = (B, S, E) be a bipartite exchange economy. Let {ωb
i},

{ωs
j}, and {xij} be an exchange equilibrium, then the exchange subgraph of G is

G′ = (B, S, E ′), where E ′ = {(i, j) | xij > 0}.

In contrast to the exchange equilibrium wealth, the exchange subgraph need not

be unique. We say that exchange subgraph G′ is minimal if the removal of any

edge from G′ changes the exchange equilibrium wealths. Note that even when G is

connected its exchange subgraph may be disconnected. We thus call the connected

components of the exchange subgraph trading components. We say that a trading

component is (n, k) if there are n buyers and k sellers. We will show that this will

result in the wealth of each buyer in such component being k/n, and the wealth of

each seller being n/k. Thus, wherever there is a wealth variation in G there are at

least two trading components that have a different ratio between buyers and sellers

in them.

In the bipartite exchange economy model described in Section 2.3, the graph

over which the buyers and sellers trade is exogenously defined. That is, the graph

is fixed a priori, and then the players trade according to it. The main contribution

of Chapter 2 is to describe how the topology of the graph affects variation in price

of the goods. The main contribution of this chapter is to make the formation of the

graph endogenous to the game. That is, players are allowed to buy edges to other
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players, as opposed to having a topology imposed on them. We now give the formal

definition of this new model.

3.3.2 The Network Formation Game

In this section we give a formal definition of the network formation game. This

game consists of two sets of players, B and S, where |B| = |S| = n. The set B is

defined as the buyer set, and the set S is defined as the seller set. As in the bipartite

exchange economy we assume that each buyer starts off with an infinitely divisible

endowment of 1 unit of an abstract good, which we call cash. Each seller starts off

with an infinitely divisible endowment of 1 unit of another abstract good, which we

call wheat.

The action of a buyer bi is denoted ab
i ∈ {0, 1}n and the action of seller j is

denoted as
j ∈ {0, 1}n. These actions encode which edges, if any, a player buys.

An edge (bi, sj) is bought by player bi only if ab
i(j) = 1 and it is bought by sj

only if as
j(i) = 1. (At equilibrium, an edge (bi, sj) will be bought by bi or sj or

neither, but not both.) A strategy is said to be pure if no player is randomizing

over their actions; in this chapter we study only pure strategies. Next, let a =

ab
1× . . .×ab

n×as
1× . . .×as

n be the joint action of all the players. Let the set of edges

that bi buys be denoted Eb
i (a) = {(bi, sj) | ab

i(j) = 1}, and let the set of edges that

sj buys be Es
j (a) = {(bi, sj) | as

j(i) = 1}. The joint action of all the players defines

a bipartite graph, G(a) = (B, S, E) as follows. The nodes on one side of the graph

represent the buyers and on the other side represent the sellers. The set of edges

E are the edges that the players bought, or more formally: E =
⋃

i∈[n],t∈{b,s} Et
i(a).

Observe that every graph G defines a bipartite exchange economy. We call the price

vector and consumption plan that form an equilibrium of the bipartite exchange

economy an exchange equilibrium. This equilibrium will determine the wealth each

player earns; the wealth that buyer bi earns is denoted ωb
i = ωb

i (G), and the wealth

that seller sj earns is denoted ωs
j = ωs

i (G). The wealth each player earns will form
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the positive component of that players utility function. The negative component will

be determined by how many edges each player buys. More formally, we define the

utility functions of the players of type t ∈ {b, s} in the network formation game as

follows:

ut
i(a) = ut

i(a
t
i, a

t
−i) = ωt

i − α|Et
i |.

A joint action a = ab
1 × . . . × ab

n × as
1 × . . . × as

n is said to be a Nash equilibrium

if for every player i we have ut
i(a

t
i, a

t
−i) ≥ ut

i(â
t
i, a

t
−i) for every action ât

i. Since we

only consider pure strategies for the players actions, we also only consider pure Nash

equilibrium. Thus, each Nash equilibrium strategy a induces a graph, G, which we

call an equilibrium graph.

Some important comments on this model are in order here. First, the utility

functions ut
i above specify the utilities or payoffs to the players of a standard one-shot,

simultaneous move game: all players simultaneously choose the set of edges they wish

to purchase, which in turn determines G and therefore the utility components ωt
i .

Second, it is important to note that there are two distinct equilibrium concepts we

shall need to reason about. Our primary interest is in the (pure) Nash equilibrium

of the game defined by the ut
i, which is the network formation game. However, the

definition of ut
i itself involves another equilibrium quantity — namely, the wealth

ωt
i that i receives at exchange equilibrium in the fixed network G. For clarity we

shall always refer to equilibria of the formation game given by the ui simply as Nash

equilibria, and to the latter notion as the exchange equilibria for a fixed G. Third,

note that the ut
i treat the initial purchase of edges and the exchange equilibrium

wealths as taking place in the same “currency”, which differs depending on the type

of agent: buyers end with wealth measured in wheat, while sellers end with dollars.

We can view this as modeling a central “edge banker” who is willing to extend credit

in either currency to the players in order to allow the trade network to be built1.

1If desired, the notion of the edge banker can be made formal and endogenous to the game as

a third player type with edges as initial endowments and equal utility for dollars and wheat.
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3.4 Summary of Main Results

In this section, we state and discuss our main results; proofs of the theorems are

given in Section 3.5. Our first result relates the edge cost α to the minimum exchange

equilibrium wealth in any Nash equilibrium graph.

Theorem 3.4.1. Let G be a Nash equilibrium graph of the network formation game,

and let ωmin be the minimum exchange equilibrium wealth in G of any player. Then

α ≥ 1− ωmin, or equivalently, ωmin ≥ 1− α.

Recalling that the average exchange equilibrium wealth is always 1 (since all

endowments are equal), Theorem 3.4.1 states a natural limit on how much exchange

equilibrium wealth variation can result from the formation game — the smaller the

edge costs α, the more equitable these wealths must be. Great variation in wealths

can only arise in the presence of high edge costs. The intuition behind this result is

that a player of sufficiently low exchange wealth should be able to find another such

player to trade with, with the resulting wealth gain more than covering the edge

cost. The proof behind this intuition is somewhat subtle owing to the fragility of

exchange equilibria — a small change to the underlying graph may cause large and

distant changes to the exchange equilibrium.

Theorem 3.4.2. Let G be any bipartite graph, and let C be a trading component of

G with buyer set B̃ and seller set S̃ such that |B̃| = m and |S̃| = k, m > k. Then

there exists a node s ∈ S̃ and an edge e incident on s such that the removal of e from

G decreases the exchange equilibrium wealth of s by at most 1/k. Furthermore, if G

is a Nash equilibrium graph of the network formation game, then α ≤ 1/k.

The second claim in Theorem 3.4.2 follows from the first by virtue of the fact

that at Nash equilibrium, all of the edges in the trading component C must have

been purchased by S ′ — since m > k, the buyers in B′ are being “exploited” by the

smaller number of sellers in S ′, and thus have better choices of edge purchases.
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Figure 3.1: Top row: An example of an exploitation graph with k = 2, ℓ = 4 and
n = 17. Seller exchange equilibrium wealth values are 1/2, 1/3, 4 and 5. Bottom row:
An example of a balanced graph with n = 14. Seller exchange equilibrium wealth
values are 2/3, 3/2, 3/4 and 4/3.

Together Theorems 3.4.1 and 3.4.2 provide upper and lower bounds on the edge

cost α in terms of the minimum exchange wealth and the possible trading component

structure. It can be shown that together these bounds strongly constrain the possible

Nash equilibrium graphs of the formation game, and that in turn the remaining

possibilities can all in fact be realized, leading to a precise characterization of all

Nash equilibrium graphs. Before stating our main theorem precisely, we define the

following types of graphs.

• Perfect Matchings. The class of all perfect matchings between the buyers and

sellers. In this class all exchange rates or wealths are equal to 1.

• Exploitation Graphs. These are graphs in which every trading component has

a single party of one type (say, sellers) “exploiting” a (possibly much) larger

set of parties of the other type, or vice-versa (a single buyer exploiting many

sellers). The collection of such components must meet the constraint that

there must be an equal number of buyers and sellers, but also a much stronger

constraint on the number of possible different components that can be present

simultaneously. More precisely, for any k, ℓ > 1, let G be a graph consisting of

the union of n1 (1, k)-trading components, n2 (1, k + 1)-trading components,

n3 (ℓ, 1)-trading components, and n4 (ℓ+1, 1)-trading components, where n1 +

n2 + n3ℓ + n4(ℓ + 1) = n1k + n2(k + 1) + n3 + n4 (equal number of buyers and
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sellers). Note that in any such graph there may be at most 4 different (say)

seller wealth values: 1/k, 1/(k + 1), ℓ and ℓ + 1. Thus for large values of k or

ℓ there is great wealth variation. The class of Exploitation Graphs consists of

all such graphs G. See Figure 3.1 for an example.

• Balanced Graphs. While still permitting some inequality, these graphs are

closer to the Perfect Matchings than to the Exploitation Graphs, in that wealth

variation is strongly limited. More precisely, for any k > 2, let G be a graph

consisting of the union of n1 trading components that are either (k − 1, k) or

(k, k + 1) and n1 trading components that are either (k, k − 1) or (k + 1, k),

k > 2. (Note that since the number of buyers is 1 less than the number of

sellers in a (k − 1, k)-trading component and a (k, k + 1)-trading component,

any mixture of n1 such components is balanced by any mixture of n1 (k, k−1)

and (k + 1, k)-trading components.) In such a graph there are again at most

4 different seller wealth values: k/(k − 1), (k + 1)/k, (k − 1)/k, and k/(k + 1),

but unlike in Exploitation Graphs, unbounded wealth variation is not possible,

and for large k all wealths are nearly equal. See Figure 3.1 for an example.

Armed with these definitions, we can now state our main theorem, which provides

a complete characterization of every Nash equilibria of our network formation game.

Theorem 3.4.3. Let NE(n, α) be the set of all Nash equilibria graphs of the network

formation game for a fixed population size n and edge cost α, and let NE be the union

of NE(n, α) over all n and α. Then the set NE equals the union of classes Perfect

Matchings, Exploitation Graphs, and Balanced Graphs defined above.

As has been suggested, the proof that NE is contained in the stated union will

follow from Theorems 3.4.1 and 3.4.2 above, while the proof that it contains the

union will be shown by explicit construction which is deferred to Appendix B.3. We

emphasize that Theorem 3.4.3 places very strong constraints on the Nash equilib-

rium graphs, and accordingly, on the nature of wealth variation. For instance, the
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characterization rules out certain exchange rates or wealths — 2/5 is one example of

an unattainable value. Wealth variation can essentially occur only in monopolistic

form (the exploitation graphs).

Our results rely on one final structural characterization that is of independent

interest, and concerns the “compactness” of Nash equilibrium graphs. More pre-

cisely, we show that a Nash equilibrium graph G cannot contain redundant edges

— that is, the removal of any edge in G will change the exchange subgraph and the

exchange rates or wealths. The intuition behind this theorem is that if redundant

edges existed, the nodes that purchased them can remove them from the graph with-

out effecting their wealth, and thus it is not a Nash equilibrium. Again there is some

subtlety in the proof due to the aforementioned fragility of exchange equilibria. It is

interesting to note that in other formation games, such as that in [1], cycles can exist

at equilibrium, which can be seen as an analog of redundant edges in our formation

game.

Theorem 3.4.4. Let G be a Nash equilibrium graph of the network formation game.

Then G is equal to its minimal exchange subgraph.

3.5 The Analysis

In this section we provide the proofs of the results described in Section 3.4, although

we will defer some of the more technical lemmas to Appendix B. First, we will

generalize Theorem 2.4.1 to the case where the number of buyers need not equal the

number of sellers. We will then use this result to prove the correctness of a simple

algorithm for computing exchange equilibria. Then we will use properties of this

algorithm to prove the bounds on α outlined by Theorems 3.4.1 and 3.4.2.
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3.5.1 Generalization of Theorem 2.4.1

Theorem 2.4.1 provides a necessary and sufficient condition to have no wealth vari-

ation in a graph where the number of sellers equals the number of buyers. Next, we

will extend that theorem to graphs where the number of buyers does not equal the

number of sellers. This will help us compute the wealth of the sellers in each trad-

ing component, since in a given trading component, the number of buyers need not

equal the number of sellers. First we will provide a construction that will transform

a graph with an unequal number of buyers and sellers to a graph with an equal num-

ber of buyers and sellers. Then, we show that the transformed graph has a perfect

matching if and only if the original graph has no wealth variation.

Definition 3.5.1. Let G = (B, S, E) be a bipartite graph such that |B| = n and

|S| = m. Its τ -balanced graph G′ = (B′, S ′, E ′) is constructed as follows. For each

bi ∈ B make m/τ copies in B′, call them bi
1, . . . , b

i
m/τ , and for each sj ∈ S make n/τ

copies of it in S ′, call them sj
1, . . . , s

j
n/τ . Finally, for each edge (bi, sj) ∈ E, add edges

to E ′ to form the complete bipartite graph between bi
1, . . . , b

i
m/τ and sj

1, . . . , s
j
n/τ .

Lemma 3.5.1. Let G = (B, S, E) be a bipartite graph such that |B| = n and

|S| = m. Let τ > 0 be the maximum number such that each element of an ex-

change equilibrium consumption plan {xij} can be represented as kτ for an integer

k.2 Let G′ = (B′, S ′, E ′) be the τ -balanced graph of G. Then there exists an exchange

equilibrium consumption plan for G, where the buyers all earn wealth m/n and the

sellers all earn wealth n/m, if and only if G′ has a perfect matching.

We defer the proof of this lemma to the appendix, see Section B.1.

2Since the utilities and endowments of the players are rational, the values of the consumption

plan are also rational [27]. Thus, such a τ must exist.
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Input : G1 = (B1, S1, E) a bipartite exchange economy
Output: the trading components of G1

i = 1;
repeat

Let Ui = argmaxU⊆Bi

|U |
|N(U)|

;

Ci = {Ui, N(Ui)};
Bi+1 = Bi \ Ui, Si+1 = Si \N(Ui);
Ei+1 = Ei \ {(u, v) | u ∈ Ui or v ∈ N(Ui)};
i = i + 1;
Gi = (Bi, Si, Ei);

until Bi = ∅ ;

Algorithm 1: This algorithm takes as input a bipartite exchange economy,
G1, and outputs the trading components, C1, ..., Cr of G1.

3.5.2 The Structure of Nash Equilibria of the Formation

Game

The proofs of our main results use an algorithm for determining the trading com-

ponents of a bipartite exchange economy. For a bipartite graph G = (B, S, E) if

W is a set of nodes from one side of the bipartition, then N(W ) denotes the set of

nodes connected by an edge to some node in W . Algorithm 1 (see Figure) works

by iteratively choosing the subset of buyers, U ⊆ B that maximizes |U |/|N(U)|,
outputs U and N(U), removes them from the graph, and repeats. Intuitively the set

of buyers, U , that maximizes this ratio will be getting fairly low wealth since there

are many buyers connected to only a few sellers in N(U). Furthermore, buyers not

in U that are attached to the sellers in N(U) will likely buy from other sellers since

the price in N(U) will be relatively high. There are more general and more efficient

algorithms for the equilibrium computation performed by Algorithm 1, such as the

algorithm given by Devanur et al. [27]. The simplicity and properties of Algorithm 1,

as we shall demonstrate, make it ideal for our structural analysis of the formation

game Nash equilibria.

Theorem 3.5.1. If Algorithm 1 is given any bipartite exchange economy G, then
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it will output all of the trading components of G (which comprises the exchange

subgraph of G), along with the wealth of each buyer and seller in G. Furthermore,

the connected components output by the algorithm are sorted according to the buyers’

wealth in non-decreasing order, i.e., |Ui|
|N(Ui)|

≥ |Ui+k|
|N(Ui+k)|

, for k > 0.

This theorem is proved via the following two lemmas. The first shows that if

the players in a bipartite exchange economy trade within the trading components

output by Algorithm 1, then there will be no wealth variation within each trading

component.

Lemma 3.5.2. If Algorithm 1 is run on a bipartite exchange economy G = (B, S, E),

and the players trade within the trading components output, C1 = {U1, N(U1)}, . . . ,
Cr = {Ur, N(Ur)}, then every Ci will have no wealth variation, furthermore, the

wealth of each seller in Ci will be |Ui|/|N(Ui)|, and the wealth of each buyer in Ci

will be |N(Ui)|/|Ui|.

Proof. Let τ > 0 be the maximum number such that each element of an exchange

equilibrium consumption plan {xij} can be represented as kτ for an integer k. Let

H = (Ui, N(Ui), Ei), where Ei = {(u, v) | u ∈ Ui, v ∈ N(Ui), and (u, v) ∈ E}. Let

H ′ = {U ′
i , V

′
i , E

′
i} be the τ -balanced graph of H . Assume for the sake of contradiction

that there is wealth variation in H . Then, by Lemma 3.5.1 there is no perfect

matching in H ′. Next, by Theorem 2.4.1 if there is no perfect matching in H ′, then

there is a set W ⊂ U ′
i , such that |N(W )| < |W |. By the construction of H ′ we can

assume, without loss of generality, that if one of the nodes corresponding to bi in H ′

is in W , then all of the nodes corresponding to bi in H ′ are in W . More formally, if

bi
k ∈W then {bi

k}m/τ
k=1 ⊆ W . Now let R(W ) = {bi | bi

k ∈ W for some k}, then we get

the following. (The left most equality comes from the construction of H ′.)

|R(W )|
|N(R(W ))| =

τ |W |/|N(Ui)|
τ |N(W )|/|Ui|

=
|W |
|N(W )|

|Ui|
|N(Ui)|

>
|Ui|
|N(Ui)|
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This contradicts the fact that |Ui|/|N(Ui)| has the maximum ratio of buyers to sellers

in Gi−1. Thus there is no wealth variation in H . Since there is no wealth variation

in H at exchange equilibrium, and because of the market clearing condition, the

wealth of each seller must be |Ui|/|N(Ui)|, and the wealth of each buyer must be

|N(Ui)|/|Ui|

This next lemma establishes the fact that as Algorithm 1 runs, the ratio of the

size of the subsets of buyers to the size of their neighbor sets, |Ui|/|N(Ui)|, is non-

increasing. This is essential to the proof of correctness of our algorithm, because the

algorithm assumes that Ui and N(Ui) will form a trading component, and this result

shows that neither set will have better trading opportunities.

Lemma 3.5.3. For any run of Algorithm 1, |Ui|/|N(Ui)| ≥ |Ui+k|/|N(Ui+k)| for

k > 0.

Proof. Assume for the sake of contradiction that the lemma does not hold, then there

exists two consecutive sets such that |Ui|/|N(Ui)| < |Ui+1|/|N(Ui+1)|. Consider the

set Ui ∪ Ui+1 during a run of Algorithm 1 just before Ui and N(Ui) were removed

from the graph.

|Ui ∪ Ui+1|
|N(Ui ∪ Ui+1)|

≥ |Ui|+ |Ui+1|
|N(Ui)|+ |N(Ui+1)|

>
|Ui|
|N(Ui)|

,

which contradicts the maximality of Ui.

As consequence of lemmas 3.5.2 and 3.5.3, the proof of Theorem 3.5.1 follows. A

key implication of this Theorem is an analog for Lemma 2.4.3.

Corollary 3.5.1. Let C = (B̃, S̃). Then C is a trading component if and only if for

every subset B′ ⊆ B̃, we have |B′|
|N(B′)|

≤ |B̃|

|N(B̃)|
.

A symmetric claim holds for the sellers.

After showing that the algorithm indeed computes both the exchange equilibrium

prices and the exchange subgraph in which they occur, we would like to prove the
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theorems stated in Section 3.4 using the algorithm’s properties. Note that although

the proofs rely on Algorithm 1, the statements are independent of the algorithms

used to compute the exchange equilibria. The proof of Theorem 3.4.4, which states

that the equilibrium graph equals its minimal exchange subgraph, is deferred to

Appendix B.4. Next we prove Theorem 3.4.1, which states that α is lower bounded

by 1 minus the minimum wealth.

Theorem (3.4.1). Let G be a Nash equilibrium graph of the network formation game,

and let ωmin be the minimum exchange equilibrium wealth in G of any player. Then

α ≥ 1− ωmin, or equivalently, ωmin ≥ 1− α.

Let u be the buyer who earns the least wealth in G, and let v be the seller who

earns the least wealth in G. This proof analyzes how much u would gain if it bought

an edge to v. Thus we add the edge (u, v) to G, forming a new graph G′. Running

Algorithm 1 on G′ allows us to show that u and v would each earn a wealth of 1 in

G′. Then, since G is an equilibrium graph and u did not buy an edge to v in G, it

must have been the case that α ≥ 1− ωmin.

Proof. Let C1 = {U1, N(U1)}, . . . , Cr = {Ur, N(Ur)} denote the connected compo-

nents output by Algorithm 1 on input G (since G is an equilibrium graph of the

network formation game, by Theorem 3.4.4, the union of the connected components

equals G itself). Without loss of generality assume that a buyer achieves the mini-

mal wealth. Also, assume that |U1| > |N(U1)|, otherwise there is no wealth variation

and the bound is trivially satisfied, and let |U1| = |N(U1)| + k, where k > 0. By

Theorem 3.5.1, |Ur|
|N(Ur)|

= mini∈[r]
|Ui|

|N(Ui)|
, which means that the sellers in Cr get the

lowest wealth of all the sellers in G. Now assume u ∈ U1 connects to v ∈ N(Ur), and

call the resulting graph G′. We now focus our attention on the set U−
1 = U1 \ {u}.

By Theorem 3.5.1, U1 achieves the maximum ratio of buyers to sellers in G imply-

ing |N(U−
1 )| = |N(U1)|, and thus |U−

1 | = |N(U−
1 )| + k − 1. More generally, since

|U1|
|N(U1)|

= maxi∈[r]
|Ui|

|N(Ui)|
in G, for every W ⊂ U1, |W | ≤ |N(W )|+ k − 1.
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Our next step is to run Algorithm 1 on G′. Consider the iteration in which the last

part of U−
1 is removed. Let W ′ be the subset of U−

1 removed in all previous iterations.

We have already shown that |W ′| ≤ |N(W ′)| + k − 1, and subtracting this from

|U−
1 | = |N(U−

1 )|+k−1 implies |U−
1 \W ′| ≥ |N(U−

1 \W ′)|. Thus, by Corollary 3.5.1,

the buyers in the the last part of U−
1 earn wealth at most 1. Furthermore, by

Theorem 3.5.1, all buyers removed up to this point earn wealth at most 1. Observe

that buyer u could not be removed as a part of previous trading component with

buyer wealth strictly smaller than 1, as u itself would have added one node to the set,

and v would have added one node to the neighbor set, thereby decreasing the ratio

of buyers to sellers. Therefore, we can assume that either u has not been removed

up to this iteration, or it has been removed with wealth exactly 1. We next show

that if it was not removed yet, it will be removed with wealth 1. For any set W

that does not contain u and that v ∈ N(W ), we have |W |/|N(W )| < 1 (otherwise

v would have had a higher wealth in G). Since after the removal of U−
1 , we have

|{u}|/|N({u})| = 1 and this is u’s only edge remaining, u and v will be removed

together and the wealth of each will be 1. Therefore, the wealth of u would increase

by 1−wmin if it bought the edge to v. Since G is an equilibrium graph, this implies

α ≥ 1− wmin.

Note that although the proof is referring to an equilibrium graph, we can deduce

from the proof the fact that every node with wealth less than 1 can achieve wealth 1

by buying an additional edge. We also note that the following proposition regarding

the identities of the players buying the edges follows from the same line of argument.

Theorem 3.5.2. Let G be a Nash equilibrium graph of the network formation game.

Then the exchange equilibrium wealth of each node which buys an edge is at least 1.

We now go on and prove the upper bound theorem, Theorem 3.4.2, which states

that if an (m, k) trading component (k < m) is part of an equilibrium graph, then

α is at most 1/k.
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Theorem (3.4.2). Let G be any bipartite graph, and let C be a trading component

of G with buyer set B̃ and seller set S̃ such that |B̃| = m and |S̃| = k, m > k. Then

there exists a node s ∈ S̃ and an edge e incident on s such that the removal of e from

G decreases the exchange equilibrium wealth of s by at most 1/k. Furthermore, if G

is a Nash equilibrium graph of the network formation game, then α ≤ 1/k.

This proof works by forming a new graph G′ which consists of G with a specific

type of edge incident on s, removed from it. We run Algorithm 1 on G′ and show

that s will be removed as part of a set with a ratio of buyers to sellers at least m−1
k

.

Proof. Let B′ ⊂ B̃ be a strict subset of buyers in C that maximizes the ratio of

buyers to neighboring sellers, and let β be this ratio. More formally, let

β = argmax
X:X⊂B̃ and Y =N(X)

|X|
|Y | ,

and let B′ and S ′ = N(B′) be sets that maximize the above ratio. We proceed

by showing the existence of a seller in S ′ that can remove one of its edges and

decrease its wealth by at most 1/k. There exists at least one seller s ∈ S ′ that has a

neighbor b /∈ B′, because if this were not the case C would not be connected. Now

we consider the value of (s, b) to s. Let G′ be the graph after the removal of (s, b).

Run Algorithm 1 on G′, and let M1 = (U1, V1), ..., Ml = (Ul, Vl) be the sets removed

by the algorithm before s is removed (i.e. s ∈ Vl+1). We will show that after the

removal of these sets, the wealth of s is at least m−1
k

, i.e. |Ul+1|
|Vl+1|

is at least m−1
k

. In the

next few steps we use the following notation: Si = S ′∩Vi, Bi = B′∩Ui, S̄l = ∪l
i=1Si

and B̄l = ∪l
i=1Bi. That is, Si and Bi are the vertices of S ′ and B′ that Algorithm 1

removed during iteration i, and S̄l and B̄l are all of the vertices of S ′ and B′ removed

through iteration l. Let x ∈ B̄l, thus x ∈ Bi for some i ∈ [l], furthermore x ∈ B′.

Let y be any neighbor of x. Since N(B′) = S ′, y ∈ S ′. Now y ∈ N(Bj) for some

1 ≤ j ≤ i, thus y ∈ Sj, and so y ∈ W̄l. Thus with respect to G, N(B̄l) ⊆ S̄l. By the

definition of S ′ and B′, for every l > 1, |B̄l|
|S̄l|
≤ β.

69



Partition B′ into two sets, B′ \ B̄l and B̄l. We have just shown β = |B′|
|S′|
≥ |B̄l|

|N(B̄l)|
,

then we must have |B′\B̄l|
|N(B′\B̄l)|

≥ |B′|
|S′|

= β. Therefore, when v is removed, it is part of

a set with a ratio of buyers to sellers least β which implies (as Algorithm 1 chooses

the set that maximizes the ratio) that the set in which it is actually removed with

has a ratio at least β as well (note that it is not necessarily S ′ \ S̄l), and thus the

wealth of v is at least β. By Lemma B.2.1 the decrease in the wealth of v is at most

m/k − β ≤ 1/k, which concludes the first part of Theorem. Furthermore, if the

trading component is part of an equilibrium graph of the network formation game,

then by Theorem 3.5.2, v buys all of her incident edges and thus α ≤ 1/k.

We are finally ready to prove Theorem 3.4.3 which states that the set of Nash

equilibrium of the formation game equals the union of the three following graphs

families: Perfect Matching, Exploitation, or Balanced. First we show that the set

of Nash Equilibrium of the formation game are contained in one of the three fami-

lies. Then we show that each of these graph families contain Nash equilibria of the

formation game.

Theorem (3.4.3). Let NE(n, α) be the set of all Nash equilibria graphs of the net-

work formation game for a fixed population size n and edge cost α, and let NE be the

union of NE(n, α) over all n and α. Then the set NE equals the union of classes

Perfect Matchings, Exploitation Graphs, and Balanced Graphs defined above.

Proof. Let C be an (m, k) trading component of the graph. We next show that only

a few values of (m, k) can occur. By Theorem 3.4.1 we have that α ≥ 1 − k
m

. By

Theorem 3.4.2 we have that α ≤ 1/k. Combining these two inequalities we have

that

1/k ≥ 1− k/m⇒ m ≥ k(m− k)

which holds only for k = 1 and k = m − 1. Therefore, the only possible trading

components are (1, k) and (k, k + 1). First we show that a (1, k) trading component

cannot coexist with a (k, k + 1) trading component (unless k = 2). The first type of
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trading component implies that α ≥ 1− 1/k, and the second implies that α ≤ 1/ℓ,

and this can only hold for ℓ = k = 2, however we defined the (1, 2)-trading component

as an Exploitation(1, 2) rather than a balanced graph.

Now consider the case where (1, k) trading component exists along with (1, k+ℓ)

for ℓ ≥ 2, and let u be the sole buyer in the (1, k) trading component. Now u can

buy an edge to a seller v in the (1, k + ℓ) component; it is easy to see that now v

will trade with u and will earn 1/(k +1) wealth, rather than trading inside the k + ℓ

component and earning wealth 1/(k+ℓ). Therefore, (1, k) and (1, k+ℓ) components

cannot both be part of an equilibrium graph of the network formation game. It sill

remains to show that (k, k + 1) cannot coexist with (ℓ, ℓ + 1). Let us see what are

the restrictions imposed by such component. By Theorem 3.4.2 and Theorem 3.4.1,

we have that
1

k + 1
≤ α ≤ 1

k

This immediately implies that only consecutive trading components, that is, (k−1, k)

and (k, k + 1), can coexist. Thus we have shown that every Nash equilibrium of the

formation game is either a Perfect Matching, Exploitation, or Balanced graph.

Now we show that each of these 3 families contain Nash equilibrium of the network

formation game. Consider a perfect matching graph. Any node that does not buy

an edge cannot change its wealth by buying additional edges. If the node did so, the

graph would still contain a perfect matching, and by Theorem 2.4.1 the exchange

equilibrium would still occur along this perfect matching. Consider a node that

buys an edge and deviates to a strategy in which it removes its edge and buys ℓ

edges. In this case, this node would have a wealth of ℓ
ℓ+1

and thus would have

no incentive to deviate in this manner. If a node, which buys an edge, buys an

additional ℓ edges, as before the graph would still contain a perfect matching and

the exchange equilibrium would not be changed. By Lemma B.3.2, Exploitation(k, ℓ)

graphs are Nash equilibrium for α > 1−2/(max(k+1, ℓ+1))2, and by Lemma B.3.5,

Balanced(k, k + 1) graphs are Nash equilibrium of the game for α = 1/(k + 1).
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Chapter 4

Networks Preserving

Evolutionary Equilibria and the

Power of Randomization

4.1 Introduction

In this chapter, we introduce and examine a natural extension of classical evolution-

ary game theory (EGT) to a setting in which pairwise interactions are restricted to

the edges of an undirected graph or network. This extension generalizes the classical

setting, in which all pairs of organisms in an infinite population are equally likely

to interact. The classical setting can be viewed as the special case in which the

underlying network is a clique.

There are many obvious reasons why one would like to examine more general

graphs, the primary one being in that many scenarios considered in evolutionary

game theory, all interactions are in fact not possible. For example, geographical

restrictions may limit interactions to physically proximate pairs of organisms. Also,

the social structure of a group of organisms may dictate which pairs of organisms

interact. More generally, as evolutionary game theory has become a plausible model

72



not only for biological interaction, but also economic and other kinds of interaction

in which certain dynamics are more imitative than optimizing (see [10, 94, 49] and

chapter 4 of [106]), the network constraints may come from similarly more general

sources. Evolutionary game theory on networks has been considered before, but not

in the generality we will do so here (see Section 4.4).

We generalize the definition of an evolutionary stable strategy (ESS) to networks,

and show a pair of complementary results that exhibit the power of randomization

in our setting: subject to degree or edge density conditions, the classical ESS of

any 2-player, symmetric game are preserved when the graph is chosen randomly and

the mutation set is chosen adversarially, or when the graph is chosen adversarially

and the mutation set is chosen randomly. We also prove converses to these main

results that show only the classical ESS are preserved in these graphical settings.

These results show that insofar as classifying stable strategies, the random pairwise

matching scheme of the classical model is equivalent to either randomizing the graph

or randomizing the mutations. We will see that the reason we can classify the stable

strategies in these types of graphs, is that these topologies preclude enclaves of

mutants that have lots of internal, mutant-mutant interactions and few external,

incumbent-mutants interactions. This is yet another example of a result that shows

how the topology of the network can effect the structure of equilibria. We also

examine natural strengthenings of our generalized ESS definition, and show that

similarly strong results are not possible for them.

The work described here is part of recent efforts examining the relationship be-

tween graph topology or structure and properties of equilibrium outcomes. Previous

works in this line include studies of the relationship of topology to properties of

correlated equilibria in graphical games [54], and studies of price variation in graph-

theoretic market exchange models (see Chapter 2). More generally, this work con-

tributes to the line of graph-theoretic models for game theory investigated in both

computer science [60] and economics [51].
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4.2 Classical EGT

The fundamental concept of evolutionary game theory is the evolutionarily stable

strategy (ESS). Intuitively, an ESS is a strategy such that if all the members of a

population adopt it, then no mutant strategy could invade the population [96]. To

make this more precise, we describe the basic model of evolutionary game theory, in

which the notion of an ESS resides.

The classical model of evolutionary game theory considers an infinite population

of organisms, where each organism is assumed to be equally likely to interact with

each other organism. Interaction is modeled as playing a fixed, 2-player, symmetric

game defined by a fitness function F (we emphasize that the same game F is played

in all interactions). Let A denote the set of actions available to both players, and

let ∆(A) denote the set of probability distributions or mixed strategies over A, then

F : ∆(A) × ∆(A) → ℜ. If two organisms interact, one playing strategy s and the

other playing strategy t, the s-player earns a fitness of F (s|t) while the t-player earns

a fitness of F (t|s).

In this infinite population of organisms, suppose that there is a 1−ǫ fraction who

play strategy s, and call these organisms incumbents ; and suppose that there is an ǫ

fraction who play t, and call these organisms mutants . Assume that two organisms

are chosen uniformly at random to play each other. The strategy s is an ESS if the

expected fitness of an organism playing s is higher than that of an organism playing

t, for all t 6= s and all sufficiently small ǫ. Since an incumbent will meet another

incumbent with probability 1−ǫ and it will meet a mutant with probability ǫ, we can

calculate the expected fitness of an incumbent, which is simply (1−ǫ)F (s|s)+ǫF (s|t).
Similarly, the expected fitness of a mutant is (1− ǫ)F (t|s) + ǫF (t|t). Thus we come

to the formal definition of an ESS [106].

Definition 4.2.1. A strategy s is an evolutionarily stable strategy (ESS) for the 2-

player, symmetric game given by fitness function F , if for every strategy t 6= s, there
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H (V − C)/2 V
D 0 V/2

Figure 4.1: The game of Hawks and Doves

exists an ǫt such that for all 0 < ǫ < ǫt, (1−ǫ)F (s|s)+ǫF (s|t) > (1−ǫ)F (t|s)+ǫF (t|t).

A consequence of this definition is that for s to be an ESS, it must be the case

that F (s|s) ≥ F (t|s), for all strategies t. This inequality means that s must be a

best response to itself, and thus any ESS strategy s must also be a Nash equilibrium.

In general the notion of ESS is more restrictive than Nash equilibrium, and not all

2-player, symmetric games have an ESS.

Next, we give an example of a 2-player, symmetric game called Hawks and Doves,

and then exhibit its ESS. The game of Hawks and Doves models two organisms

fighting over a resource. Obtaining the resource results in a fitness gain of V , while

fighting for the resource and losing results in a fitness decrease of C. If a Hawk

plays a Dove, the Hawk will fight for the resource and the Dove will give up. This

results in a Hawk earning an increase of fitness of V , and the Dove’s fitness staying

the same. If two Doves play each other, they split the resource earning them both a

fitness increase of V/2. If two Hawks play, eventually one will win and one will lose,

and it assumed that each organism has a 1/2 chance of being the winner. Figure 4.1

shows the payoff matrix for this game.

The strategy profile (D, D) is not a Nash Equilibrium because one player could

unilaterally deviate and play H and increase its payoff from V/2 to V . Since (D, D) is

not a Nash Equilibrium, D cannot be an ESS. Now, if V > C then H is an ESS. To see

this observe that F (H|H) = (V −C)/2. Let t be any mixed strategy with probability

p < 1 of playing H and 1−p of playing D, then F (t|H) = pV −C
2

+(1−p)0 < (V−C)/2.

Since F (H|H) > F (t|H) for all t 6= H , H is an ESS. We leave it as an exercise for the

reader to show that if V ≤ C, the mixed strategy of playing H with probability V/C

and D with probability 1− V/C is an ESS. Observe that as V → C, the probability
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of playing H approaches 1. This coincides with the pure strategy ESS of playing H

when V > C.

In this chapter our interest is to examine what kinds of network structure preserve

the ESS strategies for those games that do have a standard ESS. First we must of

course generalize the definition of ESS to a network setting.

4.3 EGT on Graphs

In our setting, we will no longer assume that two organisms are chosen uniformly at

random to interact. Instead, we assume that organisms interact only with those in

their local neighborhood, as defined by an undirected graph or network. As in the

classical setting (which can be viewed as the special case of the complete network

or clique), we shall assume an infinite population, by which we mean we examine

limiting behavior in a family of graphs of increasing size.

Before giving formal definitions, some comments are in order on what to expect

in moving from the classical to the graph-theoretic setting. In the classical (complete

graph) setting, there exist many symmetries that may be broken in moving to the

network setting, at both the group and individual level. Indeed, such asymmetries

are the primary interest in examining a graph-theoretic generalization.

For example, at the group level, in the standard ESS definition, one need not

discuss any particular set of mutants of population fraction ǫ. Since all organisms

are equally likely to interact, the survival or fate of any specific mutant set is identical

to that of any other. In the network setting, this may not be true: some mutant

sets may be better able to survive than others due to the specific topologies of their

interactions in the network. For instance, foreshadowing some of our analysis, if s

is an ESS but F (t|t) is much larger than F (s|s) and F (s|t), a mutant set with a

great deal of “internal” interaction (that is, edges between mutants) may be able

to survive, whereas one without this may suffer. At the level of individuals, in the

76



classical setting, all incumbents have the same fitness and all mutants have the same

fitness. Thus the assertion that one mutant dies implies that all mutants die, again

by symmetry. In the network setting, individual fates may differ within a group all

playing a common strategy. These observations imply that in examining ESS on

networks we face definitional choices that were obscured in the classical model.

If G is a graph representing the allowed pairwise interactions between organisms

(vertices), and u is a vertex of G playing strategy su, then the fitness of u is given

by

F (u) =

∑

v∈Γ(u) F (su|sv)

|Γ(u)| .

Here sv is the strategy being played by the neighbor v, and Γ(u) = {v ∈ V : (u, v) ∈
E}. One can view the fitness of u as the average fitness u would obtain if it played

each of its neighbors, or the expected fitness u would obtain if it were assigned to

play one of its neighbors chosen uniformly at random.

Classical evolutionary game theory examines an infinite, symmetric population.

Graphs or networks are inherently finite objects, and we are specifically interested

in their asymmetries, as discussed above. Thus all of our definitions shall revolve

around an infinite family G = {Gn}∞n=0 of finite graphs Gn over n vertices, but we

shall examine asymptotic (large n) properties of such families.

We first give a definition for a family of mutant vertex sets in such an infinite

graph family to contract .

Definition 4.3.1. Let G = {Gn}∞n=0 be an infinite family of graphs where Gn has n

vertices. Let M = {Mn}∞n=0 be any family of subsets of vertices of the Gn such that

|Mn| ≥ ǫn for some constant ǫ > 0. Suppose all the vertices of Mn play a common

(mutant) strategy t, and suppose the remaining vertices in Gn play a common (in-

cumbent) strategy s. We say that Mn contracts if for sufficiently large n, for all but

o(n) of the j ∈Mn, j has an incumbent neighbor i such that F (j) < F (i).

A reasonable alternative would be to ask that the condition above hold for all

mutants rather than all but o(n). Note also that we only require that a mutant
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have one incumbent neighbor of higher fitness in order to die; one might consider

requiring more. In Sections 4.6.1 and 4.6.2 we consider these stronger conditions

and demonstrate that our results can no longer hold.

To properly define an ESS for an infinite family of finite graphs in a way that

recovers the classical definition asymptotically in the case of the family of complete

graphs, we first must give a definition that restricts attention to families of mutant

vertices that are smaller than some invasion threshold ǫ′n, yet remain some con-

stant fraction of the population. This prevents “invasions” that survive merely by

constituting a vanishing fraction of the population.

Definition 4.3.2. Let ǫ′ > 0, and let G = {Gn}∞n=0 be an infinite family of graphs

where Gn has n vertices. Let M = {Mn}∞n=0 be any family of (mutant) vertices in

Gn. We say that M is ǫ′-linear if there exists an ǫ, ǫ′ > ǫ > 0, such that for all

sufficiently large n, ǫ′n > |Mn| > ǫn.

We can now give our definition for a strategy to be evolutionarily stable when

employed by organisms interacting with their neighborhood in a graph.

Definition 4.3.3. Let G = {Gn}∞n=0 be an infinite family of graphs where Gn has n

vertices. Let F be any 2-player, symmetric game for which s is a strategy. We say

that s is an ESS with respect to F and G if for all mutant strategies t 6= s, there

exists an ǫt > 0 such that for any ǫt-linear family of mutant vertices M = {Mn}∞n=0

all playing t, for n sufficiently large, Mn contracts.

Thus, to violate the ESS property for G, one must witness a family of mutations

M in which each Mn is an arbitrarily small but nonzero constant fraction of the

population of Gn, but does not contract (i.e. every mutant set has a subset of linear

size that survives all of its incumbent interactions). In the proof of Theorem 4.5.2

we show that the definition given coincides with the classical one in the case where

G is the family of complete graphs, in the limit of large n. We note that even in the
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classical model, small sets of mutants were allowed to have greater fitness than the

incumbents, as long as the size of the set was o(n) [100].

In the definition above there are three parameters: the game F , the graph family

G and the mutation family M . Our main results will hold for any 2-player, symmetric

game F . We will also study two rather general settings for G and M : that in which

G is a family of random graphs and M is arbitrary, and that in which G is nearly

arbitrary and M is randomly chosen. In both cases, we will see that, subject to

conditions on degree or edge density (essentially forcing connectivity of G but not

much more), for any 2-player, symmetric game, the ESS of the classical settings, and

only those strategies, are always preserved. Thus a common theme of these results is

the power of randomization: as long as either the network itself is chosen randomly,

or the mutation set is chosen randomly, classical ESS are preserved.

4.4 Related Work

There has been previous work that analyzes which strategies are resilient to mutant

invasions with respect to various types of graphs. What sets our work apart is that

the model we consider encompasses a significantly more general class of games and

graph topologies. Moreover, all of the work described below analyzes the limiting

behavior of specific dynamics of a population, whereas we seek to describe the re-

lationship between topology and equilibrium behavior by comparing the classical

notion of an ESS to the graphical notion. We will briefly survey this literature and

point out the differences in the previous models and ours.

In [35], [11], and [12], the authors consider specific families of graphs, such as

cycles and lattices, where players play specific games, such as 2× 2-games or k × k-

coordination games. In these papers the authors specify a simple, local dynamic

for players to improve their payoffs by changing strategies, and analyze what type

of strategies will grow to dominate the population. The model we propose is more

79



general than both of these, as it encompasses a larger class of graphs as well as a

richer set of games.

Also related to our work is that of [75], where the authors propose two mod-

els. The first assumes organisms interact according to a weighted, undirected graph.

However, the fitness of each organism is simply assigned and does not depend on

the actions of each organism’s neighborhood. The second model has organisms ar-

ranged around a directed cycle, where neighbors play a 2×2-game. With probability

proportional to its fitness, an organism is chosen to reproduce by placing a replica

of itself in its neighbors position, thereby “killing” the neighbor. We consider more

general games than the first model and more general graphs than the second.

Finally, the following papers are most closely related to our work: [34, 80, 21, 86].

The authors consider 2-action, coordination games played by players in a general

undirected graph. In these three works, the authors specify a dynamic for a strategy

to reproduce, and analyze properties of the graph that allow a strategy to overrun

the population. Here again, one can see that our model is more general than these,

as it allows for organisms to play any 2-player, symmetric game.

4.5 Networks Preserving ESS

We now proceed to state and prove two complementary results in the network ESS

model defined in Section 4.3. First, we consider a setting in which the graphs are

generated via the Gn,p model of Erdős and Rényi [13]. In this model, every pair

of vertices is joined by an edge independently and with probability p (where p may

depend on n). The mutant set, however, will be constructed adversarially (subject

to the linear size constraint given by Definition 4.3.3). For these settings, we show

that for any 2-player, symmetric game, s is a classical ESS of that game, if and only

if s is an ESS for {Gn,p}∞n=0, where p = Ω(1/nc) and 0 ≤ c < 1, and any mutant

family {Mn}∞n=0, where each Mn has linear size. We note that under these settings,
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if we let c = 1 − γ for small γ > 0, the expected number of edges in Gn is n1+γ

or larger — that is, just superlinear in the number of vertices and potentially far

smaller than O(n2). It is easy to convince oneself that once the graphs have only a

linear number of edges, we are flirting with disconnectedness, and there may simply

be large mutant sets that can survive in isolation due to the lack of any incumbent

interactions in certain games. Thus we examine the minimum plausible edge density.

The second result is a kind of dual to the first, considering a setting where the

graphs are chosen arbitrarily (subject to conditions) but the mutant sets are chosen

randomly. It states that for any 2-player, symmetric game, s is a classical ESS for

that game, if and only if s is an ESS for any {Gn = (Vn, En)}∞n=0 in which for all v ∈
Vn, deg(v) = Ω(nγ) (for any constant γ > 0), and a family of mutant sets {Mn}∞n=0,

that is chosen randomly (that is, in which each organism is labeled a mutant with

constant probability ǫ > 0). Thus, in this setting we again find that classical ESS

are preserved subject to edge density restrictions. Since the degree assumption is

somewhat strong, we also prove another result which only assumes that |En| ≥ n1+γ,

and shows that there must exist at least 1 mutant with an incumbent neighbor of

higher fitness (as opposed to showing that all but o(n) mutants have an incumbent

neighbor of higher fitness). As will be discussed, this rules out “stationary” mutant

invasions.

4.5.1 Random Graphs, Adversarial Mutations

Now we state and prove a theorem which shows that if s is a classical ESS, then s

will be an ESS for random graphs where a linear sized set of mutants is chosen by

an adversary.

Theorem 4.5.1. Let F be any 2-player, symmetric game, and suppose s is a classical

ESS of F . Let the infinite graph family G = {Gn}∞n=0 be drawn according to Gn,p,

where p = Ω(1/nc) and 0 ≤ c < 1. Then with probability 1, s is an ESS with respect

to F and G.
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The main idea of the proof is to divide mutants into two categories, those with

“normal” fitness and those with “abnormal” fitness. Here normal fitness will mean

within a (1 ± τ) factor of the fitness defined by the classical definition of an ESS,

and abnormal fitness will mean fitness outside of that range. First, we show all but

o(n) of the population (incumbent or mutant) have an incumbent neighbor of normal

fitness. This will imply that all but o(n) of the mutants of normal fitness have an

incumbent neighbor of higher fitness. The vehicle for proving this is Theorem 2.15

of [13], which gives an upper bound on the number of vertices not connected to a

sufficiently large set. This theorem assumes that the size of this large set is known

with equality which necessitates the union bound argument below. Secondly, we

show that there can be at most o(n) mutants with abnormal fitness. Since there are

so few of them, even if none of them have an incumbent neighbor of higher fitness,

s will still be an ESS with respect to F and G.

Proof. Let t 6= s be the mutant strategy. Since s is a classical ESS, there exists an

ǫt such that (1 − ǫ)F (s|s) + ǫF (s|t) > (1 − ǫ)F (t|s) + ǫF (t|t), for all 0 < ǫ < ǫt.

Let M be any mutant family that is ǫt-linear. Thus for any fixed value of n that is

sufficiently large, there exists an ǫ such that |Mn| = ǫn and ǫt > ǫ > 0. Also, let

In = Vn \Mn and let I ′ ⊆ In be the set of incumbents that have fitness in the range

(1 ± τ)[(1 − ǫ)F (s|s) + ǫF (s|t)] for some constant τ , 0 < τ < 1/6. Lemma 4.5.1

below shows (1− ǫ)n ≥ |I ′| ≥ (1− ǫ)n− O
(

log n
p

)

. Finally, let

TI′ = {x ∈ V \ I ′ : Γ(x) ∩ I ′ 6= ∅}.

(For the sake of clarity we suppress the subscript n on the sets I ′ and T .) The union

bound gives us

Pr(|TI′| ≥ δn) ≤
(1−ǫ)n
∑

i=(1−ǫ)n−O( log n

p )

Pr(|TI′| ≥ δn and |I ′| = i) (4.1)
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Letting δ = n−γ for some γ > 0 gives δn = o(n). We will apply Theorem 2.15 of [13]

to the summand on the right hand side of Equation 4.1, in order to do so, we will

next check that we meet all of the conditions of this theorem.

First we show δpn ≥ 3 log n. Observe that δpn = Ω(n−γn−cn) = Ω(n1−c−γ).

Letting γ = (1− c)/2, combined with the fact that 0 ≤ c < 1, ensures 1− c− γ > 0

and γ > 0. Next, in theorem 2.15, C = pi and we need to check that C ≥ 3 log(e/δ).

Since δ = n−(1−c)/2, 3 log(e/δ) = O(log n). From the lower bound on i given by

equation 4.1, C ≥ (1− ǫ)np−O(log n) = Ω(n1−c). Since 0 ≤ c < 1 we have satisfied

this requirement. Finally, we need to check that limn→∞ Cδn =∞.

Cδn ≥ [(1− ǫ)np− O(log n)] n−(1−c)/2n

= n1/2+c/2
[

(1− ǫ)n1−c − O(log n)
]

(4.2)

Since 0 ≤ c < 1, the last line above is ω(n1/2). This is the last condition of

Theorem 2.15 [13]. When we apply this theorem to equation 4.1, we get

Pr(|TI′ | ≥ δn) ≤
(1−ǫ)n
∑

i=(1−ǫ)n−O( log n

p )

exp
(

−1

6
Cδn

)

(4.3)

≤ O

(

log n

p

)

exp
(

−1

6
n

1+c
2

[

(1− ǫ)n1−c − O(log n)
]

)

(4.4)

= o(n) exp(−ω(n1/2)) (4.5)

= o(1)

Line 4.4 comes from the previously established lower bound on Cδn given by Line 4.2.

Line 4.5 combines p = Ω(1/nc) and 0 ≤ c < 1 to show that O
(

log n
p

)

= o(n), and it

also uses the previously established fact that the quantity on the right of Line 4.4

is exp(−ω(n1/2)). Thus we have shown, with probability tending to 1 as n → ∞,

at most o(n) individuals are not attached to an incumbent which has fitness in the

range (1 ± τ)[(1 − ǫ)F (s|s) + ǫF (s|t)]. This implies that the number of mutants

of approximately normal fitness, not attached to an incumbent of approximately

normal fitness, is also o(n).
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Now those mutants of approximately normal fitness that are attached to an

incumbent of approximately normal fitness have fitness in the range (1 ± τ)[(1 −
ǫ)F (t|s) + ǫF (t|t)]. The incumbents that they are attached to have fitness in the

range (1±τ)[(1−ǫ)F (s|s)+ǫF (s|t)]. Since s is an ESS of F , we know (1−ǫ)F (s|s)+
ǫF (s|t) > (1 − ǫ)F (t|s) + ǫF (t|t), thus if we choose τ small enough, we can ensure

that all but o(n) mutants of normal fitness have a neighboring incumbent of higher

fitness.

Finally by Lemma 4.5.1, we know there are at most O
(

log n
p

)

= o(n) mutants of

abnormal fitness. So even if all of them are more fit than their respective incumbent

neighbors, we have shown all but o(n) of the mutants have an incumbent neighbor

of higher fitness.

We now state and prove the lemma used in the proof above.

Lemma 4.5.1. For almost every graph Gn,p with (1−ǫ)n incumbents, all but O
(

log n
p

)

incumbents have fitness in the range (1±τ)[(1−ǫ)F (s|s)+ǫF (s|t)], where p = Ω(1/nc)

and ǫ, τ and c are constants satisfying 0 < ǫ < 1, 0 < τ < 1/6, 0 ≤ c < 1. Similarly,

under the same assumptions, all but O
(

log n
p

)

mutants have fitness in the range

(1± τ)[(1− ǫ)F (t|s) + ǫF (t|t)].

Proof. We define the mutant degree of vertex v to be the number of mutant neighbors

of v which we denote by degM(v). Similarly, we define the incumbent degree of a

vertex v to be the number of incumbent neighbors of v which we denote by degI(i).

(Note that deg(v) = degI(v)+degM(v).) Theorem 2.14 of [13] states that the number

of incumbents with mutant degree outside the range (1 ± δ)p|M | is at most 12 log n
δ2p

.

By the same theorem, the number of incumbents with incumbent degree outside

the range (1 ± δ)p|I| is at most 12 log n
δ2p

. Let S be the set of incumbents with either

incumbent degree outside the range (1± δ)p|I| or mutant degree outside the range

(1 ± δ)p|M | or both. We have shown that |S| ≤ 24 log n
δ2p

= O
(

log n
p

)

. Let i ∈ I \ S.

Next, we analyze the average expected fitness of i.
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F (i) =
degI(i)

deg(i)
F (s|s) +

degM(i)

deg(i)
F (s|t)

where,

degI(i)

deg(i)
∈ (1± δ)p|I|

(1± γ)pn
=

(1± δ)(1− ǫ)

1± γ

degM(i)

deg(i)
∈ (1± δ)p|M |

(1± γ)pn
=

(1± δ)ǫ

1± γ

Above we made use Corollary 3.14 of [13], which states that if pn/ log n →∞ then

the maximum degree of a vertex in almost every graph is {1 + o(1)}pn. We also

used Lemma C.0.1, which states that if p = Ω(1/nc) for some constant 0 ≤ c < 1,

then the minimum degree of a vertex in almost every Gp is at least {1 − γ}pn, for

all constants γ > 0. Thus,

F (i) =
(1± δ)

(1± γ)
[(1− ǫ)F (s|s) + ǫF (s|t)]

So we can choose δ and γ small enough such that F (i) = (1 ± τ)[(1 − ǫ)F (s|s) +

ǫF (s|t)]. The proof for the mutant case is analogous.

Theorem 4.5.3 states that if s is a classical ESS and G = {Gn,p}, where p =

Ω(1/nc) and 0 ≤ c < 1, then with probability 1 as n→∞, s is an ESS with respect

to G. Here we show that if s is an ESS with respect to G, then s is a classical

ESS. In order to prove this theorem, we do not need the full generality of s being

an ESS for G when p = Ω(1/nc) where 0 ≤ c < 1. All we need is s to be an ESS

for G when p = 1. In this case there are no more probabilistic events in the theorem

statement. Also, since p = 1 each graph in G is a clique, thus all of the incumbents

will have identical fitness and all of the mutants will have identical fitness. So if one

incumbent has a higher fitness than one mutant, then all incumbents have higher

fitness than all mutants. This gives rise to the following theorem.

Theorem 4.5.2. Let F be any 2-player, symmetric game, and suppose s is a strategy

for F and t 6= s is a mutant strategy. Let G = {Kn}∞n=0. If, as n → ∞, for any

85



ǫt-linear family of mutants M = {Mn}∞n=0, there exists an incumbent i and a mutant

j such that F (i) > F (j), then s is a classical ESS of F .

The proof of this theorem analyzes the limiting behavior of the mutant population

as the size of the cliques in G tends to infinity. It also shows how the definition of

ESS given in Section 4.5 recovers the classical definition of ESS.

Proof. Since each graph in G is a clique, every incumbent will have the same number

of incumbent and mutant neighbors, and every mutant will have the same number

of incumbent and mutant neighbors. Thus, all incumbents will have identical fitness

and all mutants will have identical fitness. Next, one can construct an ǫt-linear

mutant family M , where the fraction of mutants converges to ǫ for any ǫ, where

ǫt > ǫ > 0. So for n large enough, the number of mutants in Kn will be arbitrarily

close to ǫn. Thus, any mutant subset of size ǫn will result in all incumbents having

fitness (1− ǫn
n−1

)F (s|s)+ ǫn
n−1

F (s|t), and all mutants having fitness (1− ǫn−1
n−1

)F (t|s)+

ǫn−1
n−1

F (t|t). Furthermore, by assumption the incumbent fitness must be higher than

the mutant fitness. This implies,

lim
n→∞

((

1− ǫn

n− 1

)

F (s|s) +
ǫn

n− 1
F (s|t) >

(

1− ǫn− 1

n− 1

)

F (t|s) +
ǫn− 1

n− 1
F (t|t)

)

This implies, (1 − ǫ)F (s|s) + ǫF (s|t) > (1 − ǫ)F (t|s) + ǫF (t|t), for all ǫ, where

ǫt > ǫ > 0.

4.5.2 Adversarial Graphs, Random Mutations

We now move on to our second main result. Here we show that if the graph fam-

ily, rather than being chosen randomly, is arbitrary subject to a minimum degree

requirement, and the mutation sets are randomly chosen, classical ESS are again

preserved. A modified notion of ESS allows us to considerably weaken the degree

requirement to a minimum edge density requirement.
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Theorem 4.5.3. Let G = {Gn = (Vn, En)}∞n=0 be an infinite family of graphs in

which for all v ∈ Vn, deg(v) = Ω(nγ) (for any constant γ > 0). Let F be any

2-player, symmetric game, and suppose s is a classical ESS of F . Let t be any

mutant strategy, and let the mutant family M = {Mn}∞n=0 be chosen randomly by

labeling each vertex a mutant with constant probability ǫ, where ǫt > ǫ > 0. Then

with probability 1, s is an ESS with respect to F , G and M .

Proof. Let t 6= s be the mutant strategy and let X be the event that every incumbent

has fitness within the range (1±τ)[(1−ǫ)F (s|s)+ǫF (s|t)], for some constant τ > 0 to

be specified later. Similarly, let Y be the event that every mutant has fitness within

the range (1± τ)[(1− ǫ)F (t|s) + ǫF (t|t)]. Since Pr(X ∩ Y ) = 1− Pr(¬X ∪ ¬Y ), we

proceed by showing Pr(¬X ∪ ¬Y ) = o(1).

¬X is the event that there exists an incumbent with fitness outside the range

(1± τ)[(1− ǫ)F (s|s)+ ǫF (s|t)]. If degM(v) denotes the number of mutant neighbors

of v, similarly, degI(v) denotes the number of incumbent neighbors of v, then an

incumbent i has fitness degI (i)
deg(i)

F (s|s) + degM (i)
deg(i)

F (s|t). Since F (s|s) and F (s|t) are

fixed quantities, the only variation in an incumbents fitness can come from variation

in the terms degI (i)
deg(i)

and degM (i)
deg(i)

. One can use the Chernoff bound followed by the

union bound to show that for any incumbent i,

Pr(F (i) /∈ (1± τ)[(1− ǫ)F (s|s) + ǫF (s|t)]) < 4 exp

(

−ǫ deg(i)τ 2

3

)

.

Next one can use the union bound again to bound the probability of the event ¬X,

Pr(¬X) ≤ 4n exp

(

−diτ
2

3

)

where di = mini∈V \M deg(i), 0 < ǫ ≤ 1/2. An analogous argument can be made to

show Pr(¬Y ) < 4n exp(− ǫdjτ2

3
), where dj = minj∈M deg(j) and 0 < ǫ ≤ 1/2. Thus,

by the union bound,

Pr(¬X ∪ ¬Y ) < 8n exp

(

−ǫdτ 2

3

)
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where d = minv∈V deg(v), 0 < ǫ ≤ 1/2. Since deg(v) = Ω(nγ), for all v ∈ V , and ǫ,

τ and γ are all constants greater than 0,

lim
n→∞

8n

exp (ǫdτ 2/3)
= 0,

so Pr(¬X ∪¬Y ) = o(1). Thus, we can choose τ small enough such that (1 + τ)[(1−
ǫ)F (t|s)+ ǫF (t|t)] < (1− τ)[(1− ǫ)F (s|s)+ ǫF (s|t)], and then choose n large enough

such that with probability 1 − o(1), every incumbent will have fitness in the range

(1 ± τ)[(1 − ǫ)F (s|s) + F (s|t)], and every mutant will have fitness in the range

(1± τ)[(1− ǫ)F (t|s) + ǫF (t|t)]. So with high probability, every incumbent will have

a higher fitness than every mutant.

The assumption on the degree of each vertex of Theorem 4.5.3 is rather strong.

The following theorem relaxes this requirement and only necessitates that every

graph have n1+γ edges, for some constant γ > 0, in which case it shows there will

alway be at least 1 mutant with an incumbent neighbor of higher fitness. A strategy

that is an ESS in this weakened sense will essentially rule out stable, static sets of

mutant invasions, but not more complex invasions. An example of more complex

invasions are mutant sets that survive, but only by perpetually “migrating” through

the graph under some natural evolutionary dynamics, akin to “gliders” in the well-

known Game of Life [9].

Theorem 4.5.4. Let F be any game, let s be a classical ESS of F , and let t 6= s be a

mutant strategy. For any graph family G = {Gn = (Vn, En)}∞n=0 in which |En| ≥ n1+γ

(for any constant γ > 0), and any mutant family M = {Mn}∞n=0 which is determined

by labeling each vertex a mutant with probability ǫ, where ǫt > ǫ > 0, the probability

that there exists a mutant with an incumbent neighbor of higher fitness approaches 1

as n→∞.

The main idea behind the proof is to show that with high probability, over only

the choice of mutants, there will be an incumbent-mutant edge in which both vertices
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have high degree. If their degree is high enough, we can show that close to an ǫ

fraction of their neighbors are mutants, and thus their fitnesses are very close to

what we expect them to be in the classical case. Since s is an ESS, the fitness of the

incumbent will be higher than the mutant.

Proof. We call an edge (i, j) ∈ En a g(n)-barbell if deg(i) ≥ g(n) and deg(j) ≥ g(n).

Suppose Gn has at most h(n) edges that are g(n)-barbells. This means there are at

least |En|−h(n) edges in which at least one vertex has degree at most g(n). We call

these vertices light vertices. Let ℓ(n) be the number of light vertices in Gn. Observe

that |En|−h(n) ≤ ℓ(n)g(n). This is because each light vertex is incident on at most

g(n) edges. This gives us that

|En| ≤ h(n) + ℓ(n)g(n) ≤ h(n) + ng(n).

So if we choose h(n) and g(n) such that h(n)+ng(n) = o(n1+γ), then |En| = o(n1+γ).

This contradicts the assumption that |En| = Ω(n1+γ). Thus, subject to the above

constraint on h(n) and g(n), Gn must contain at least h(n) edges that are g(n)-

barbells.

Now let Hn denote the subgraph induced by the barbell edges of Gn. Note that

regardless of the structure of Gn, there is no reason that Hn should be connected.

Thus, let m be the number of connected components of Hn, and let c1, c2, . . . , cm be

the number of vertices in each of these connected components. Note that since Hn

is an edge-induced subgraph we have ck ≥ 2 for all components k. Let us choose

the mutant set by first flipping the vertices in Hn only. We now show that the

probability, with respect to the random mutant set, that none of the components of

Hn have an incumbent-mutant edge is exponentially small in n.

Pr[All components are uniformly labeled] = Πm
k=1(ǫ

ck + (1− ǫ)ck) (4.6)

= (1− ǫ)
∑m

k=1
ckΠm

k=1(1 + αck)(4.7)

≤ (1− ǫ)
∑m

k=1
ck(1 + α2)m (4.8)
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≤ (1− ǫ)
∑m

k=1
ck(1 + (βǫ)2)m (4.9)

≤ (1− ǫ)
∑m

k=1
ck(1− ǫ)−mǫβ2

(4.10)

≤ (1− ǫ)(1− ǫβ2

2
)
∑m

k=1
ck (4.11)

If we let α = ǫ
1−ǫ

, line 4.7 comes from simple algebra. We use the facts that

α < 1 and ck ≥ 2 to arrive at the upper bound in line 4.8. Since α = ǫ
1−ǫ

, for any

constant β > 0, there exists an ǫ sufficiently small, such that α < βǫ, this gives us

the bound in line 4.9. Line 4.10 comes from getting like bases for the exponents in

line 4.9, and by using Taylor series to show log(1 + x) = x + O(x2) when |x| < 1.

Since each component contains at least 1 edge,
∑m

k=1 ck ≥ 2m, using this fact gave

us the last line.

We can choose ǫ small enough to ensure that the exponent in line 4.11 is posi-

tive. Furthermore, since
∑m

k=1

(

ck

2

)

≥ h(n), we can use Lemma C.0.2 to show that
∑m

k=1 ck ≥
√

h(n). Thus, we can let h(n) = nγ/4 and the probability that all compo-

nents are uniformly labeled will go to 0, as n tends to infinity.

Now assuming that there exists a non-uniformly labeled component, by con-

struction that component contains an edge (i, j) where i is an incumbent and j is

a mutant, that is a g(n)-barbell. We also assume that the h(n) vertices already

labeled have been done so arbitrarily, but that the remaining g(n) − h(n) vertices

neighboring i and j are labeled mutants independently with probability ǫ. Then

via a standard Chernoff bound argument, one can show that with high probabil-

ity, the fraction of mutants neighboring i and the fraction of mutants neighboring

j is in the range (1 ± τ) (g(n)−h(n))ǫ
g(n)

. Similarly, one can show that the fraction of

incumbents neighboring i and the fraction of mutants neighboring j is in the range

1− (1± τ) (g(n)−h(n))ǫ
g(n)

.

Since s is an ESS, there exists a ζ > 0 such that (1 − ǫ)F (s|s) + ǫF (s|t) =

(1 − ǫ)F (t|s) + ǫF (t|t) + ζ . If we choose g(n) = nγ , and h(n) = o(g(n)), we can

choose n large enough and τ small enough to force F (i) > F (j), as desired.
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Theorem 4.5.3 states that if s is a classical ESS for a 2-player, symmetric game

F , where G is chosen adversarially subject to the constraint that the degree of each

vertex is Ω(nγ) (for any constant γ > 0), and mutants are chosen with probability

ǫ, then s is an ESS with respect to F , G, and M . Here we show that if s is an ESS

with respect to F , G, and M then s is a classical ESS.

All we will need to prove this is that s is an ESS with respect to G = {Kn}∞n=0,

that is when each vertex has degree n−1. As in Theorem 4.5.2, since the graphs are

cliques, if one incumbent has higher fitness than one mutant, then all incumbents

have higher fitness than all mutants. Thus, the theorem below is also a converse to

Theorem 4.5.4. (Recall that Theorem 4.5.4 uses a weaker notion of contraction that

requires only one incumbent to have higher fitness than one mutant.)

Theorem 4.5.5. Let F be any 2-player symmetric game, and suppose s is an in-

cumbent strategy for F and t 6= s is a mutant strategy. Let G = {Kn}∞n=0. If with

probability 1 as n→∞, s is an ESS for G and a mutant family M = {Mn}∞n=0, which

is determined by labeling each vertex a mutant with probability ǫ, where ǫt > ǫ > 0,

then s is a classical ESS of F .

This proof also analyzes the limiting behavior of the mutant population as the

size of the cliques in G tends to infinity. One has to show show that as n →
∞, the incumbent fitness converges to (1 − ǫ)F (s|s) + ǫF (s|t), and the mutant

fitness converges to (1− ǫ)F (t|s) + ǫF (t|t). Observe that the exact fraction mutants

of Vn is now a random variable. Since the mutants are chosen randomly we will

use an argument similar to the proof that a sequence of random variables that

converges in probability, also converge in distribution. In this case the sequence of

random variables will be actual fraction of mutants in each Kn. So to prove this

convergence we use an argument similar to one that is used to prove that sequence of

random variables that converges in probability also converges in distribution (details

omitted). Having proved this, we will show that since s is an ESS for {Kn}∞n=0, the

incumbent fitness must be higher than the mutant fitness. This in turn establishes
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that s must be a classical ESS, and we thus obtain a converse to Theorem 4.5.3.

Proof. Fix any value of ǫ, where ǫn > ǫ > 0, and construct each Mn by labeling

a vertex a mutant with probability ǫ. By the same argument as in the proof of

Theorem 4.5.2, if the actual number of mutants in Kn is denoted by ǫnn, any mutant

subset of size ǫnn will result in all incumbents having fitness (1 − ǫnn
n−1

)F (s|s) +

ǫnn
n−1

F (s|t), and in all mutants having fitness (1 − ǫnn−1
n−1

)F (t|s) + ǫnn−1
n−1

F (t|t). This

implies

lim
n→∞

Pr(s is an ESS for Gn w.r.t. ǫnn mutants) = 1⇒

lim
n→∞

Pr
(

( 1− ǫnn

n− 1
)F (s|s) +

ǫnn

n− 1
F (s|t) >

( 1− ǫnn− 1

n− 1
)F (t|s) +

ǫnn− 1

n− 1
F (t|t)

)

= 1⇔

lim
n→∞

Pr
(

ǫn >
F (t|s)− F (s|s)

F (s|t)− F (s|s)− F (t|t) + F (t|s) +
F (s|s)− F (t|t)

n

)

= 1

By two simple applications of the Chernoff bound and an application of the union

bound (see Lemma C.0.3), one can show the sequence of random variables {ǫn}∞n=0

converges to ǫ in probability. Next, if we let Xn = −ǫn, X = −ǫ, b = −F (s|s) +

F (t|t), and a = − F (t|s)−F (s|s)
F (s|t)−F (s|s)−F (t|t)+F (t|s)

, by Theorem 4.5.6 below, we get that

limn→∞ Pr(Xn < a + b/n) = Pr(X < a). Combining this with equation 4.12,

Pr(ǫ > −a) = 1.

The proof of the following theorem is very similar to the proof that a sequence

of random variables that converges in probability, also converge in distribution. A

good explanation of this can be found in [48], which is the basis for the argument

below.

Theorem 4.5.6. If {Xn}∞n=0 is a sequence of random variables that converge in prob-

ability to the random variable X, and a and b are constants, then limn→∞ Pr(Xn <

a + b/n) = Pr(X < a).
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Proof. By Lemma 4.5.2 (see below) we have the following two inequalities,

Pr(X < a + b/n− τ) ≤ Pr(Xn < a + b/n) + Pr(|X −Xn| > τ),

Pr(Xn < a + b/n) ≤ Pr(X < a + b/n + τ) + Pr(|X −Xn| > τ).

Combining these gives,

Pr(X < a + b/n− τ)− Pr(|X −Xn| > τ) ≤ Pr(Xn < a + b/n)

≤ Pr(X < a + b/n + τ) +

Pr(|X −Xn| > τ).

There exists an n0 such that for all n > n0, |b/n| < τ , so the following statement

holds for all n > n0.

Pr(X < a− 2τ)− Pr(|X −Xn| > τ) ≤ Pr(Xn < a + b/n)

≤ Pr(X < a + 2τ) + Pr(|X −Xn| > τ).

Take the limn→∞ of both sides of both inequalities, and since Xn converges in prob-

ability to X,

Pr(X < a− 2τ) ≤ lim
n→∞

Pr(Xn < a + b/n) (4.12)

≤ Pr(X < a + 2τ). (4.13)

Recall that X is a continuous random variable representing the fraction of mutants

in an infinite sized graph. So if we let FX(a) = Pr(X < a), we see that FX(a) is a

cumulative distribution function of a continuous random variable, and is therefore

continuous from the right. So

lim
τ↓0

FX(a− τ) = lim
τ↓0

FX(a + τ) = FX(a).

Thus if we take the limτ↓0 of inequalities 4.12 and 4.13 we get

Pr(X < a) = lim
n→∞

Pr(Xn < a + b/n).
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The following lemma is quite useful, as it expresses the cumulative distribution

of one random variable Y , in terms of the cumulative distribution of another random

variable X and the difference between X and Y .

Lemma 4.5.2. If X and Y are random variables, c ∈ ℜ and τ > 0, then

Pr(Y < c) ≤ Pr(X < c + τ) + Pr(|Y −X| > τ).

Proof.

Pr(Y < c) = Pr(Y < c, X < c + τ) + Pr(Y < c, X ≥ c + τ)

≤ Pr(Y < c | X < c + τ) Pr(X < c + τ) + Pr(|Y −X| > τ)

≤ Pr(X < c + τ) + Pr(|Y −X| > τ)

4.6 Limitations of Stronger Models

In this section we show that if one tried to strengthen the model described in Sec-

tion 4.3 in two natural ways, one would not be able to prove results as strong as

Theorems 4.5.1 and 4.5.3, which hold for every 2-player, symmetric game.

4.6.1 Stronger Contraction for the Mutant Set

In Section 4.3 we alluded to the fact that we made certain design decisions in arriving

at Definitions 4.3.1, 4.3.2 and 4.3.3. One such decision was to require that all but o(n)

mutants have incumbent neighbors of higher fitness. Instead, we could have required

that all mutants have an incumbent neighbor of higher fitness. The two theorems in

this subsection show that if one were to strengthen our notion of contraction for the

mutant set, given by Definition 4.3.1, in this way, it would be impossible to prove

theorems analogous to Theorems 4.5.1 and 4.5.4.
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Recall that Definition 4.3.1 gave the notion of contraction for a linear sized subset

of mutants. In what follows, we will say an edge (i, j) contracts if i is an incumbent,

j is a mutant, and F (i) > F (j). Also, recall that Theorem 4.5.1 stated that if s is a

classical ESS, then it is an ESS for random graphs with adversarial mutations. Next,

we prove that if we instead required every incumbent-mutant edge to contract, this

need not be the case.

Theorem 4.6.1. Let F be a 2-player, symmetric game that has a classical ESS s for

which there exists a mutant strategy t 6= s with F (t|t) > F (s|s) and F (t|t) > F (s|t).
Let G = {Gn}∞n=0 be an infinite family of random graphs drawn according to Gn,p,

where p = Ω(1/nc) for any constant 0 ≤ c < 1. Then with probability approaching 1

as n→∞, there exists a mutant family M = {Mn}∞n=0, where ǫtn > |Mn| > ǫn and

ǫt, ǫ > 0, in which there is an edge that does not contract.

Proof. (Sketch) With probability approaching 1 as n → ∞, there exists a vertex j

where deg(j) is arbitrarily close to ǫn. So label j mutant, label one of its neighbors

incumbent, denoted i, and label the rest of j’s neighborhood mutant. Also, label all

of i’s neighbors incumbent, with the exception of j and j’s neighbors (which were

already labeled mutant). In this setting, one can show that F (j) will be arbitrarily

close to F (t|t) and F (i) will be a convex combination of F (s|s) and F (s|t), which

are both strictly less than F (t|t).

Theorem 4.5.4 stated that if s is a classical ESS, then for graphs where |En| ≥
n1+γ , for some γ > 0, and where each organism is labeled a mutant with probability

ǫ, one edge must contract. Below we show that, for certain graphs and certain games,

there will always exist one edge that will not contract.

Theorem 4.6.2. Let F be a 2-player, symmetric game that has a classical ESS s,

such that there exists a mutant strategy t 6= s where F (t|s) > F (s|t). There exists an

infinite family of graphs {Gn = (Vn, En)}∞n=0, where |En| = Θ(n2), such that for a

mutant family M = {Mn}∞n=0, which is determined by labeling each vertex a mutant
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with probability ǫ > 0, the probability there exists an edge in En that does not contract

approaches 1 as n→∞.

Proof. (Sketch) Construct Gn as follows. Pick n/4 vertices u1, u2, . . . , un/4 and add

edges such that they from a clique. Then, for each ui, i ∈ [n/4] add edges (ui, vi),

(vi, wi) and (wi, xi). With probability 1 as n→∞, there exists an i such that ui and

wi are mutants and vi and xi are incumbents. Observe that F (vi) = F (xi) = F (s|t)
and F (wi) = F (t|s).

4.6.2 Stronger Contraction for Individuals

The model of Section 4.3 requires that for an edge (i, j) to contract, the fitness of i

must be greater than the fitness of j. One way to strengthen this notion of contraction

would be to require that the maximum fitness incumbent in the neighborhood of j

be more fit than the maximum fitness mutant in the neighborhood of j. This models

the idea that each organism is trying to take over each place in its neighborhood,

but only the most fit organism in the neighborhood of a vertex gets the privilege

of taking it. If we assume that we adopt this notion of contraction for individual

mutants, and require that all incumbent-mutant edges contract, we will next show

that Theorems 4.6.1 and 4.6.2 still hold, and thus it is still impossible to get results

such as Theorems 4.5.1 and 4.5.4 which hold for every 2-player, symmetric game.

In the proof of Theorem 4.6.1 we proved that F (i) is strictly less than F (j).

Observe that maximum fitness mutant in the neighborhood of j must have fitness

at least F (j). Also observe that there is only 1 incumbent in the neighborhood of

j, namely i. So under this stronger notion of contraction, the edge (i, j) will not

contract.

Similarly, in the proof of Theorem 4.6.2, observe that the only mutant in the

neighborhood of wi is wi itself, which has fitness F (t|s). Furthermore, the only

incumbents in the neighborhood of wi are vi and xi, both of which have fitness F (s|t).
By assumption, F (t|s) > F (s|t), thus, under this stronger notion of contraction,
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neither of the incumbent-mutant edges, (vi, wi) and (xi, wi), will contract.
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Chapter 5

An Experimental Study of the

Coloring Problem on Human

Subject Networks

5.1 Introduction

Since the pioneering “small-world” experiment [99, 78], there has been a long and

fascinating literature examining the structural and navigational properties of natural

social networks. Findings range from the now-familiar “six degrees of separation” to

more recent theoretical explanations of the heuristics people might employ to exploit

social network structure [28, 105, 68, 69, 36]. This theoretical work suggests that

structural properties of naturally occurring networks are important in shaping be-

havior and dynamics. However, the relationships between structure and behavior are

difficult to establish in empirical field studies of existing networks. In such studies,

the network structure is typically fixed and given which prevents the investigation

of how the same group of subjects would behave in alternative networks. A differ-

ent approach, which we adopt, is to conduct controlled laboratory studies in which

network structure is deliberately varied. This provides the first of two main reasons
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for the work we describe in this chapter.

Much of the previous work in this specific area of social network theory can be

summarized in computer science terminology: Using relatively local information,

distributed human organizations can collectively compute good approximations to

the all-pairs shortest paths problem. Given the volume and visibility of this research,

it is perhaps surprising that there is little work on its natural generalization —

namely, what other types of distributed optimization problems can humans networks

solve? Answering this question provides the second main reason for the experiments

we conducted and will introduce next.

In this chapter we describe findings from a series of behavioral experiments we

have been conducting at the University of Pennsylvania. Human subjects attempt

to perform distributed graph coloring in a setting in which each subject controls

the color of a single vertex in a large and potentially complex graph. At any point,

each player can choose a color for his or her vertex, attempting to select one that

differs from the colors of all neighboring vertices. The experimental system allowed

us to vary the graph topology, the locality of information given to subjects, and the

incentive scheme1. Further details on the choices made for each of these experimental

design variables are provided in Section 5.2. Our main findings were:

• Distributed human organizations can indeed solve difficult coloring problems.

In our experiments, populations of 38 subjects found optimal colorings of 84%

of the graphs they were given within 5 minutes, often taking considerably less

time to solve them. Among a variety of other challenges, these experiments

included graph structures in which the chromatic number was very low despite

there being many high-degree individuals.

• Graph topology has strong and systematic effects on behavioral performance.

For instance, within a sequence of graphs produced by a “small-world” gener-

ative model [103] (which mixes the local connections of a cycle with a variable

1As we describe later, subjects were paid according to performance under two different schemes.
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number of long-distance chords), we find that average solution time decreases

monotonically with graph diameter, despite the fact that the introduction of

chords increases the number of coloring constraints. The graphs produced by

this generative model also appear to be considerably easier for subjects than

those generated by preferential attachment [95, 8].

• When the locality of information provided to subjects (which ranged from an

entirely local view to the ability to see the current color assignments of the

entire graph) was varied, solution time varied in a sometimes surprising way.

Within our small-world graphs, more information corresponded to a shorter

solution time. However, within the more dense preferential attachment graphs,

more information was accompanied by an increase in solution time.

• Varying the incentive scheme from a “team” or collective structure, in which

individuals are paid only if the entire graph is properly colored, to a “selfish” or

individual one, in which individuals are paid as long as they do not participate

in any coloring conflicts, corresponded to a mild change in average experiment

duration, but was accompanied by a drastic change in cooperative behavior.

Under collective incentives, subjects changed color much more often when they

have no coloring conflicts, possibly in order to help the overall population

escape perceived local minima in solution space.

Along with these primary findings, we also combine statistical analysis of the exper-

imental data with subject’s self-reports to propose a natural and simple behavioral

model.

For these early experiments, we have chosen to examine a number of experimental

design variables simultaneously in order to map out a broad research agenda for

future work. Our experiments deliberately blend ideas, methods and problems from

sociology, computer science, and behavioral economics. They shed early light on

the way human organizations deal with difficult distributed optimization problems:
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whether they can solve them, under what conditions, and using what strategies.

5.2 Related Work

It is often thought that structural properties of naturally occurring networks are

influential in shaping individual and collective behavior and dynamics. Examples

include the popular notion that “hubs or connectors” are inordinately important

in the routing of information in social and organizational networks [99, 45, 67]. A

long history of research has established the frequent empirical appearance of certain

structural properties in networks from many domains, including sociology [99, 78,

47], biology [97, 102], and technology [16]. These properties include small diameter

(the “six degrees of separation” phenomenon), local clustering of connectivity [104],

and heavy-tailed distributions of connectivity [95, 8, 14]. All of these works study

one social network frozen in time, thus it is difficult to study how topology affects

the behavior of the individuals in the network. Theoretical models have sought to

explain how these structural properties of social networks may interact with network

dynamics [68, 69, 36]. This work is the first to give experimental evidence as to the

relationship between network structure and network dynamics.

There have been a few studies of how social networks change over time. The

authors of [6] study how groups form, grow, and evolve in the co-author network

and the LiveJournal social network. In [71] the authors study the evolution of social

networks by analyzing the e-mail patterns between individuals in a large university

over the course of one year. Both of these works give insight as to the dynamics

of the behavior in these networks. But, they are unable to systematically modify

the topology of these networks making it difficult to understand how the topology

affects the behavior of the players.
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5.3 System and Experimental Methodology

Our experiments and the system our subjects used to make color choices were both

designed to permit the investigation of three main design variables: the structure or

topology of the graph being colored; the amount and locality of information given

to each subject; and the incentive or payment scheme. Before providing details on

the system, our procedures, and the values for these experimental design variables,

we describe the graph coloring problem and our reasons for selecting it.

An instance of a graph coloring is simply an undirected network, and the goal

is to compute a proper coloring of the graph — that is, an assignment of a color to

every vertex such that no pair of vertices connected by an edge are assigned the same

color. The smallest number of colors required in order to properly color a graph is

called its chromatic number. This problem has a long history which dates back to

the late 19th century [18, 57, 44].

Our reasons for conducting a behavioral study of graph coloring were fourfold.

First, we were interested in choosing a problem which had a notably different com-

plexity, from the computer science perspective, than the shortest paths problem,

which has been the focus of the long literature that partially inspired this research.

While shortest paths is known to be a computationally easy problem for centralized

computation, graph coloring is notoriously hard, since it is NP-hard to even weakly

approximate the chromatic number [76, 40, 64, 65]. Second, we were interested in a

problem that, despite being possibly challenging to solve, was easy for human sub-

jects with no special background to quickly understand. Third, we sought a problem

which requires global coordination for its solution, but in which subjects could all

locally verify their contribution to or hindrance of this solution. Finally, the graph

coloring problem is a natural abstraction of many human and organizational prob-

lems in which it is desirable or necessary to distinguish one’s behavior from that of

neighboring parties. As a specific scenario, consider the problem faced by faculty
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members scheduling departmental events-recurring classes, one-time seminars, ex-

ams, and so on-in a limited number of available rooms. We can view the events to

be scheduled as the vertices in a network, with an edge connecting any pair of events

that temporally overlap, even partially. Clearly, two such events must be assigned to

different rooms or “colors”, thus yielding a natural graph coloring problem. Further-

more, even when there is a centralized first-come, first-serve sign-up sheet for rooms,

this mechanism is simply the starting point for the negotiation of a solution, and the

problem is still solved in a largely distributed fashion by the participants: Faculty

members routinely query the current holder of a room whether they might be able

to switch to a different room, whether their event will really require their entire time

slot, and the like. Other coloring-like problems arise in a variety of social activities

(such as selecting a cell phone ringtone that differs from those of family members,

friends, and colleagues); technological coordination (selecting a channel unused by

nearby parties in a wireless communication network [107, 52]); and individual differ-

entiation within an organization (developing an expertise not duplicated by others

nearby). Graph coloring also generalizes many classical scheduling and other resource

allocation problems in operations research, logistics, and other fields [44].

5.3.1 System Description

The system we built for our experiments provides subjects with a simple browser-

based visual interface allowing asynchronous updating of color choice and a view of

the current experiment’s state. The system permits us to execute a pre-planned series

of graph coloring problems with specified graph topologies and information views

(discussed below). During an experiment, each subject sees an interface divided

into two panels (see Figure 5.1). The left-hand or action panel provides colored

buttons that can be used to change the color of the subject’s vertex. The right-hand

or information panel provides varying amounts of information (described further

below) about the color choices of other players, but always includes at least the color
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choice of the subject and the color choices of the subject’s immediate neighbors. The

information panel, which is continually refreshed, always indicates how many color

conflicts there are in the subject’s neighborhood, or if there are none. Edges in the

graph that have color conflicts are shown as bold lines. In addition, this right-hand

panel always includes a “progress bar” at the bottom indicating how many conflicts

remain globally.

The system logs fine-grained temporal data on the exact sequence of events in

each experiment. This log contains every color-change event, indexed by vertex or

subject number, the color selected, and a timestamp with 1-second resolution. The

system also administers entry and exit questionnaires to each subject.

5.3.2 Experimental Procedures

We now briefly describe our experimental protocol, which was approved by Penn’s

Institutional Review Board process. Sessions were held in a laboratory containing 38

workstations, which determined the size of our subject pool for each session. Fifty-

five subjects were drawn from a Penn undergraduate computer science class on a

related topic with no prerequisites, and were required to attend a preliminary lecture

in which they were instructed about the graph coloring problem, the workings of the

system, and the specifics of what they would see and how they would be paid. They

had all passed a quiz designed to ensure that they understood the graph coloring

problem and the workings of the experimental system, and that they knew their

fellow subjects, who would be working on the problem with them, also understood

everything.

This chapter describes two sessions conducted in January 2006 and consisting

of multiple individual coloring experiments. These sessions were preceded by one

in September 2005, run under the same protocol but with different graphs and a

different subject pool. We viewed this earlier session as both an exploration of the

experimental design space, and a large-scale test of the system (which is difficult to
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Figure 5.1: A screen shot of the experimental system. On the left-hand side is the
action panel, which allows the user to change the color of the node marked “YOU”.
On the right-hand side is the information panel using the medium information view.

Figure 5.2: Low and high information views as seen by subjects (information panel
only). See Figure 5.1 for a full screen shot of the medium information view.
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fully test without actually gathering a large number of participants). The September

2005 session was in turn inspired by informal, uncontrolled experiments in graph

coloring run in a Spring 2005 Penn course. While both of these preliminary 2005

investigations informed system and experimental design, and gave some indication

that humans would be able to solve challenging coloring problems, we report here

only on the carefully controlled January 2006 sessions.

Each of the two January experimental sessions consisted of a series of 19 consecu-

tive graph coloring experiments, each with a 5 minute time limit. The sessions lasted

between one and two hours. Before the experiments, physical partitions were erected

to prevent subjects from glancing at other subjects or their screens. A timekeeper

called out how much of the allowed 5 minutes remained. Subjects were carefully ob-

served throughout the session to make sure they were not violating any rules by, for

instance, speaking or communicating with any other subjects, attempting to look at

the workstations of other subjects, etc. Each problem ended either after 5 minutes

or when subjects successfully colored the graph, whichever came first. Then, the

session proceeded to the next coloring problem. It is important to note that in each

coloring problem, the number of colors provided to subjects was exactly equal to the

chromatic number of the graph (which was computed in advance off-line). Thus we

deliberately held subjects to the highest standard of optimal coloring, rather than

exploring approximations.

By choosing 6 different graph topologies, 3 different information views, and 2

different incentive schemes, we generated a total of 6×3×2 = 36 unique experimental

conditions. All 18 conditions corresponding to one of the incentive schemes were

conducted on the evening of January 24, 2006; the 18 corresponding to the other

incentive scheme were given the following evening. The order of problems within

each session were chosen randomly. In addition, to examine potential “learning”

effects, each session ended with an experiment that was identical to the first one of

the session, for a total of 19 coloring problems per session. We chose a 5 minute
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time limit for each of the 19 experiments so the total duration of each of the two

sessions, including explanation of the problem and the system, would require less

than 2 hours of concentration by the subjects. This was done to minimize the effects

of mental fatigue of the participants on our results.

We now proceed to describe our choices of values for our three main experimental

design variables, beginning with the graph topologies used.

5.3.3 Choice of Graph Topologies

The space of possible graph topologies is obviously immense. Prior work has shown

that people are good at solving the distributed all-pairs shortest path problem in

the real world network they are a part of [99, 78, 28]. One of the main motivations

behind this work is to discover what other optimizations problems can people solve

in this manner. Thus we used models of social networks to generate five of the six

different graphs we assigned. However, since it was an open question whether human

subjects could solve these kinds of problem efficiently under any conditions, we also

desired a certain breadth of approach. For these reasons, we drew topologies from

two recent but rather different stochastic models for network formation.

The first of these was the so-called “small-world” family, in which a simple cycle

is augmented with a variable number of randomly chosen chords. Larger numbers of

chords are known to dramatically decrease the (average or worst-case) diameter, and

are meant to model long-distance relationships in social networks arising from chance

encounters and the like [103]. These long-distance links help in efficiently navigating

social networks [69]. To test the effects of these links in the graph coloring problem,

we examined three topologies from this family with a varying number of chords:

a simple 38-cycle with no additional edges (Simple Cycle), a graph consisting of a

cycle with 5 chords (5-Chord Cycle), and a cycle with 20 chords (20-Chord Cycle).

Rather than choosing the chords uniformly at random, we selected them at random

from among all chords that would not increase the chromatic number beyond the 2
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Chromatic Min. Max. Avg. Std. Dev. Diameter Diameter
Number Deg. Deg. Deg. Degs. (worst) (avg.)

Simple Cycle 2 2 2 2 0 19 9.76
5-Chord Cycle 2 2 4 2.26 0.60 12 5.63
20-Chord Cycle 2 2 7 3.05 1.01 7 3.34
Leader Cycle 2 3 19 3.84 3.62 3 2.31

Pref. Att., ν = 2 3 2 13 3.84 2.44 5 2.63
Pref. Att., ν = 3 4 3 22 5.68 4.22 4 2.08

Table 5.1: Statistical properties of each graph

colors required for Simple Cycle2. This had the advantage of allowing us to model

long-distance connections (and thus reduce diameter) while, in a mathematical sense,

making the local appearance of the problem strictly harder (since we have simply

added constraints without adding more colors).

The second model we examined is known as preferential attachment . In this

model, a graph is built incrementally by adding one new vertex at a time. A new

vertex is given a fixed number ν of edges to the existing graph; but rather than

these edges being chosen uniformly at random, they are directed to an existing

vertex with a probability proportional to its current degree. Among other properties,

this stochastic model is known to generate heavy-tailed distributions of degree [95,

8, 14] (modeling the social phenomenon of “connectors” [45]) and result in small

diameters [7].

Finally, we created one topology in the cycle family intended to represent more

“engineered” or hierarchical structures, such as one might find in corporations or

the military. In this Leader Cycle, a 36-cycle is augmented by two “leader” vertices,

one of which is connected to all even vertices on the cycle, the other to all the odd

vertices. The leaders are also connected to each other. The resulting graph remains

two-colorable, but has very low diameter and has two vertices with very high degree.

In Figure 5.3 we show all 6 topologies along with a coloring of each. Statisti-

cal properties of the 6 graphs are summarized in Table 5.1, where, among other

2This amounts to only connecting vertices whose indices have opposite parity.
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Figure 5.3: Graph topologies with colorings found by subjects. From left to right
and top to bottom: Simple Cycle, 5-Chord Cycle, 20-Chord Cycle, Leader Cycle,
and Preferential Attachment with ν = 2 and ν = 3.
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attributes, we give the worst-case diameter of each graph. This is the distance

between the two vertices farthest apart in the graph (the longest shortest path in

the graph). The average case diameter, on the other hand, is the average shortest

distance between all pairs of vertices (i, j) where i 6= j.

Many features of these graphs suggested that they would be challenging for the

distributed behavioral protocol we investigated. For instance, in the four cycle-based

graphs, every vertex has a degree equal to or higher than the chromatic number of

2, meaning that the local neighborhood has (often far) more players than available

colors. Thus, every participant has a coordination problem to solve directly with

their neighbors, and indirectly with the population at large. In the preferential at-

tachment graphs, there are a small number of vertices with degree small enough that

they will always have a color unused by their neighbors, but the vast majority have

rather high degree, and these graphs are the most dense of those we examined. In a

similar vein, the preferential attachment ν = 2 graph, which has chromatic number

3, contains 11 complete subgraphs on three vertices (triangles). These triangles form

a 14 vertex, connected subgraph of the ν = 2 graph. Since only 3 colors were given,

they require 14 participants to precisely coordinate their color choices. Similarly, the

ν = 3 graph, which has chromatic number 4, contains 7 complete subgraphs on four

vertices (a complete graph on four vertices is denoted K4). These 7 copies of K4

form an 11 vertex, connected subgraph of the ν = 3 graph. Since only 4 colors were

given for this graph, they require at least 11 people to precisely coordinate their

color choices. These multiple subgraphs each represent “embedded” coordination

problems that require all the available colors, and must also be integrated into a

global solution.

5.3.4 Choice of Information Views

In a particular coloring experiment, our system provided one of three different infor-

mation views in the right-hand panel of the user interface. As has been mentioned, in
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each session, we ran three experiments on each graph topology, covering all possible

information views of all of the graphs. We also ran each graph and information view

combination under both incentive schemes, as discussed below. While the informa-

tion view varied from problem to problem, in any given exercise all 38 participants

were given the same view. We have not experimented with different subjects having

different views.

In the low information view, subjects could see only the color they chose for

their own vertices and the colors of their immediate neighbors in the graph. This

information view was inspired by theoretical models of search in social networks, such

as [69], where each node only has information about its local neighborhood. The

medium information view is similar, but each neighbor is annotated with the (static)

value of its degree. This view was motivated by the desire to provide subjects with

some minimal additional information on the local structure that suggested which of

their neighbors might have a more difficult coloring task. In the high information

view, each subject could see the entire graph of 38 vertices as well as the dynamic

color choices. We chose this information view to compare the performance of the

subjects under the two relatively local views to the global view. This allowed us

to understand the effect of restricting the amount of information the subjects were

given on their ability to solve the graph coloring problem. We will see that for certain

graph topologies the local views helped the subjects arrive at a valid coloring and

for other graph topologies it hindered their ability to so. See Figures 5.1 and 5.2 for

samples of all three information views. In all three views, the display was continually

refreshed to show subject the latest color choices.

5.3.5 Choice of Incentive Schemes

Following the methodology of behavioral economics [17], we paid subjects according

to their performance and examined two different schemes for doing so. In the collec-

tive incentive scheme (which was used on the first of two evenings of experiments),
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Collective Incentive Individual Incentive
Low Med. High Low Med. High
Info. Info. Info. Info. Info. Info.

Simple Cycle 70 U 26 276 168 25
5-Chord Cycle 134 276, 61 24 221 108 24
20-Chord Cycle 159 39 24 22 39 111
Leader Cycle 24 50 30 74 28 44, 36

Pref. Att., ν = 2 U U U 35 83 U
Pref. Att., ν = 3 41 33 U 64 191 U

Table 5.2: Durations for all 38 coloring experiments. Entries denoted U indicate
experiments that ended without a successful coloring after the 5-minute (300 second)
limit. All other experiments ended with successful, optimal colorings; durations of
those are given in seconds. Entries with two values are for the experiments that were
repeated twice in each session.

for each of the 19 coloring problems, each subject was paid $5 for each graph that

was properly colored (no coloring conflicts anywhere in the graph within 5 minutes).

If even a single conflict remained after 5 minutes, none of the 38 subjects received

any payment for that problem. In the individual incentive scheme (used the second

evening), each subject was paid $5 if, at the conclusion of a problem (either due to

success at coloring the graph or the end of the 5 minutes), that subject participated

in no color conflicts, regardless of the global outcome.

These two schemes were introduced to allow the study of possible behavioral

differences between a “team” and “selfish” incentive mechanism. A natural question

to ask is whether such differences can arise in a problem such as coloring, where a

subject’s contribution to the global solution is already locally determined. Notable

differences in certain measures were in fact seen.

112



0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

2

4

6

8

10

12

14

Time (seconds)

N
um

be
r 

of
 S

ol
ve

d 
E

xp
er

im
en

ts

Histogram of Completion Times

Figure 5.4: Of the 31 solved experiments, 17 were completed in less than 60 seconds.

5.4 Results

Perhaps the most important and surprising of our experimental findings is also the

most basic: human populations can solve challenging coloring problems quite well.

Of the 38 different coloring experiments we conducted, 31 (82%) resulted in proper

optimal colorings within the alloted 5 minutes, and frequently much sooner. The

average completion time of the 31 solved problems was only 82 seconds (standard

deviation, 75 seconds) and the median just 44 seconds, indicating considerable skew

toward low solution times. A histogram of these completion times is shown in Fig-

ure 5.4. A complete listing of all 38 experimental durations is provided in Table 5.2.

The number and completion times of the solved problems came as a surprise to

both the authors and the experimental subjects. On the exit questionnaire, 52 of

the 76 responses indicated that subjects did better than they had expected.

We now examine how performance and behavior varies with each of our three

experimental design variables in turn: graph topology, information view, and incen-

tive scheme. Due to the limited number of experiments, for each of these variables

we report on averages across some or all variations of the remaining two. Thus,

when examining graph topology, for each particular topology of the six, we average
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together all experiments on that topology (which vary information view and incen-

tive scheme); when examining an information view we average across all graphs and

incentive schemes run with that view; and so on.

In the subsequent analyses we frequently use average experiment duration as a

measure of performance. There is some downward bias in this measure due to the

limit (5 minutes) on how long an individual experiment could run, and thus unsolved

experiments are included as 300 seconds in the averages. However, the distribution

of unsolved experiments was such that allowing these experiments to continue to

solution would only have strengthened the results reported here. We also examined

alternative measures of difficulty, such as the number of distinct distinct colorings

explored and the number of coloring conflicts generated, and found qualitatively

similar results. (The correlation between experiment duration and number of distinct

colorings explored was: 0.948, between experiment duration and number of conflicts

generated: 0.901, and between experiment number of distinct colorings explored and

number of conflicts generated: 0.923.)

We will also sometimes choose to report results for the four cycle-based topologies

and the two preferential attachment topologies separately due to the rather different

motivations and properties of their underlying generative models, and the actual

differences in the statistical properties of our specific instances of them (see Table 5.1

and the degree distributions in Figure 5.5).

5.4.1 Effects of Graph Topology

Every one of the six topologies was successfully colored at least twice, under some

choice of information view and incentive scheme. The average experiment duration

for each graph topology can be seen in the rightmost column of Table 5.3. There are

at least two findings of note in these results. The first is that within the family of

four cycle-based topologies, there is a monotonic and rapid decrease in duration with

decreasing graph diameter, strongly suggesting that smaller diameter results in easier
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Graph Statistics Experimental Statistics
Diameter Diameter Avg. Experiment Fraction

(worst case) (avg. case) Duration (seconds) Solved

Simple Cycle 19 9.76 144.17 5/6
5-Chord Cycle 12 5.63 121.14 7/7
20-Chord Cycle 7 3.34 65.67 6/6
Leader Cycle 3 2.31 40.86 7/7

Pref. Att., ν = 2 5 2.63 219.67 2/6
Pref. Att., ν = 3 4 2.08 154.83 4/6

Table 5.3: As the diameter of the cycle-based graphs decreased, so did the average
experiment duration. The same trend applied to the preferential attachment graphs.

coloring problems within this family. The second is that preferential attachment

graphs appear to be behaviorally much harder than the cycle-based family. We

examine each in turn.

The decrease in solution time with diameter3 for the cycle-based graphs fits with

the theory for social navigation or search in “small-world” networks, where random

chords decrease shortest paths [103], but here requires a different explanation since

the coloring problem is more complex. There is a certain inevitability to the be-

havioral dynamics on a simple cycle that appears strongly in the data and is worth

analyzing since it provides an understanding of the effects of chords and leaders.

Consider a coloring conflict (an edge between two vertices of the same color) oc-

curring on Simple Cycle, where the conflict lies within a larger region that is properly

colored. This conflict can be propagated either clockwise or counterclockwise by one

of the vertices on the conflict changing color. This moves the conflict to the other

edge of the changing player. Two coloring conflicts that “collide” eradicate each

other, and such collisions are the only way in which conflicts are resolved. Thus, at

a high level, the behavioral dynamics for cycles tend to consist of the propagation

of conflicts around the cycle until the experiment concludes. Figure 5.6 visualizes a

3The correlation between worst case diameter and experiment duration was 0.466 and the

correlation between average case diameter and experiment duration was 0.449.
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Figure 5.6: Conflict propagation in a simple cycle under the low information view
and individual incentives. Here each vertex or player is represented as a row, and
each second in the experiment as a column. The colored marks indicate players and
times where that color was chosen. The wave-like patterns clearly demonstrate the
cyclical conflict propagation discussed in the text. This experiment was successfully
solved in 276 seconds.

particularly striking example. The introduction of chords may accelerate these dy-

namics by increasing opportunities for “distant” (along the cycle) conflicts to collide.

They may also serve a coordinating function in that regions on opposite sides of the

cycle can now “see” the parity of alternating color being constructed on the other

side, a point which we elaborate and support when we examine the effects of infor-

mation view. We note that the highly regular and centralized structure of Leader

Cycle, which deliberately introduces (potentially) coordinating parties, resulted in

the lowest average duration.

The second noteworthy finding is that the preferential attachment graphs seem

to be considerably harder than the cycle family (see average durations in Table 5.3),

with ν = 2 having an average duration much larger than ν = 3. In addition, the

duration times for the cycle-based networks and those for the preferential attachment

networks passed a two-tailed, unequal variance t test for different means at P =

0.03. Most strikingly, six of the 7 unsolved experiments, across all 38, experiments

were preferential attachment graphs given under different information and incentive
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Figure 5.7: More information resulted in a decrease in experiment duration for the
four cycle-based graphs, and an increase in duration for the two preferential attach-
ment graphs.

conditions (see Table 5.2).

5.4.2 Effects of Information View

We now turn our attention to the effects of information view. Here our main finding

again highlights a distinction between the cycle-based and preferential attachment

graphs. While more information is correlated with a decrease in experiment du-

ration for cycle-based graphs, it is accompanied by an increase in the preferential

attachment graphs. Figure 5.7 exhibits these two trends, which we now discuss.

In the four cycle-based graphs there are only two proper colorings: one in which

even vertices are red and odd vertices are green, and the reverse of this. In the low

information view, subjects were unable to see which of the two possible colorings

the population as a whole was approaching. This resulted in the collective behavior

shown in the left panel of Figure 5.8, where the population oscillated between ap-

proaches to each of these two solutions. (This behavior is only slightly reduced in

the medium information view.) In the high information view the situation is quite
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Figure 5.8: Population convergence to one of two possible proper colorings for the
four cycle-based graphs. Given a (partial) choice of colors by the population, distance
to each of the two solutions was computed as follows. Players whose currently chosen
color disagrees with the color of their vertex in the solution count as +1 towards the
distance; players that have not yet chosen a color count as +1/2; and players that
have chosen the same color as their vertex in the solution count as 0. All experiments
begin at distance 19 from both solutions as no player has yet chosen a color. Points
below the horizontal line at y=19 are closer to the coloring where odd vertices are
red and even vertices are green. A y-axis value of 0 indicates convergence to this
coloring. Points above this line are closer to the reverse coloring, and a value of
38 indicates convergence to it. The solid lines represent experiments done under
collective incentives, and the dashed lines represent individual incentives. Simple
Cycles are shown in blue, 5-Chord Cycles are black, 20-Chord Cycles are red, and
Leader Cycles are green.

different, as now each subject could see to which solution the population was con-

verging. The oscillations were not present in this condition, as shown on right panel

of Figure 5.8.

In contrast, no such common understanding appears to exist for preferential at-

tachment, and the global information view seems to greatly hamper subjects. All

four trials of preferential attachment graphs with global views ended without solu-

tion after 5 min. Possible explanations include “information overload” due to the

apparent complexity of the networks or their visual layout, combined with the rapid

dynamics of the global color selection process. Alternately, it could simply be that

time spent by subjects examining the activity in more distant regions of the network
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Average Conflict Duration (seconds)
Low Info. 4.60
Medium Info. 5.21
High Info. 5.56

Table 5.4: On average, conflicts endured for a longer period of time as subjects were
given more information.

distracts them from attending to their own local subtask in the global coordination

problem, thus slowing collective solution. With further study, such findings may

have implications for areas such as information sharing across large organizations

and the design of user interfaces for complex systems for multiparty coordination.

Another effect of information view on the behavior of the participants is that con-

flicts persisted longer when subjects had more information, as shown in Table 5.4.

(A conflict remains until one of the two vertices it is incident on changes to a non-

conflicting color.) This increase in conflict duration under higher information could

be due to subjects being more patient, or it could be that subjects are being dis-

tracted by, or are busy processing, the higher-information view that they have of the

graph.

5.4.3 Effects of Incentive Scheme

When averaged across the other experimental design variables, incentive scheme

appears to have had a rather mild effect on average experiment duration (Table 5.5).

Considered as a factor by itself, individual incentives also seemed to reduce conflict

duration, perhaps explained by a desire to eliminate local conflicts as quickly as

possible. However, any effects from the change in incentive scheme will be conflated

with the effects of learning — if there are any — since the individual incentive

subjects included many (21 of the 38) who had been present during the previous

collective incentive session.

In six of the exit questionnaires, participants wrote to the effect that if they per-

ceived the population to be stuck in a local minimum while searching for a proper
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Avg. Experiment Avg. Conflict Number of
Duration (secs) Duration (secs) Perturbations

Collective Incentive 130.11 5.39 130
Individual Incentive 113.11 4.87 51

Table 5.5: Changing incentive schemes had a mild effect on average experiment
duration and average conflict duration. However, it had a major impact on the
amount of cooperative behavior exhibited.

coloring, they would change colors, even if they had no conflicts. We call the event

of a player changing colors when they had no conflicts a perturbation. Such per-

turbations are roughly analogous to the introduction of randomization or “thermal

noise” into common search algorithms such as simulated annealing. Based on these

comments, we counted the number of perturbations for each experiment, leaving out

those perturbations where the last time between having no conflicts and changing

colors was 2 seconds or less. (Including these short perturbations does not qual-

itatively change our results, but we have excluded them to account for cognitive

reaction time and system lag.) Table 5.5 shows that there was a significant differ-

ence in the number of these types of perturbations under the two different incentive

schemes. Given the nature of this metric and the incentive schemes, we believe this

difference is almost entirely due to the incentive scheme and has very little to do

with learning. However, further experimentation will be necessary to test this claim.

5.5 Algorithmic Modeling of Behavior

It is both natural and important to attempt to build simple behavioral models based

on the findings we have reported here. Next, we briefly discuss our initial efforts in

this direction.

The exit questionnaire administered to all subjects asked them for self-reports

on the strategies they used during the experiments. From these self-reports emerged

at least two natural and frequently mentioned heuristics:
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1. Choose the color with the fewest local conflicts.

(Mentioned on 11 questionnaires.)

2. Defer to high-degree neighbors.

(Mentioned on 39 questionnaires.)

We now describe a simple distributed algorithm incorporating these two heuris-

tics. We describe the algorithm’s behavior at a single vertex; the overall algorithm

consists of independent copies of this local behavior. If there is currently no conflict

between its chosen color and its neighbors’ colors, the algorithm does nothing. If

there is a conflict, but there is an unused color, the algorithm chooses the unused

color. If there is conflict, but all colors are used in the local neighborhood, the algo-

rithm chooses a new color randomly, but in a way that favors colors that are “rare”

in the neighborhood.

In the low information view version, “rare” means that the algorithm simply

chooses colors with probability inversely proportional to their frequency in the neigh-

borhood. In the medium information view version, “rare” means colors are chosen

inversely proportional to their degree weighted frequency. The low information ver-

sion captures the first of the two self-reported heuristics above, while the medium

information version captures both. Since few self-reports cited strategies specifically

requiring the full information view, we defer the development of heuristics for that

condition.

The second and third columns of Table 5.6 show the results of simulations of this

distributed algorithm on each of our graphs in both the low and medium information

versions described above. We note that this simple algorithm already reproduces

some of the behavioral findings — for instance, the general decline of running times

within the cycle family with decreasing diameter, including the leader cycle being

by far the easiest to solve. However, the behavioral ordering of the 5- and 20-

Chord cycles is not captured, nor was the behavioral difficulty of the preferential

attachment graphs. We note that the only two orderings of difficulty from the

122



Average Number of Changes to Solve
(low info) (medium info)

Uniform Rare Rare

Simple Cycle 398.21 396.05 399.60
5-Chord Cycle 687.34 360.95 274.74
20-Chord Cycle 12032.31 381.82 288.38
Leader Cycle 11792.76 215.99 115.30

Pref. Att., ν = 2 667.96 194.41 108.81
Pref. Att., ν = 3 1048.15 215.53 107.63

Table 5.6: From simulation runs (N = 10000) of a naive model (uniform) and the
proposed model (rare), which prefers to choose colors that are assigned to few others
in the neighborhood.

behavioral data that pass tests of statistical significance — namely, that Leader

Cycle is easier than 5-Chord Cycle (p = 0.035) and Preferential Attachment ν = 3 is

easier than 5-Chord Cycle (p = 0.017) — are replicated by the model. We also note

that a heuristic simply choosing a random color in response to conflicts — with no

accounting for neighboring degrees or color frequencies — replicates the behavioral

findings considerably more poorly (first column of Table 5.6).

Clearly this is a fledgling modeling effort and there is much more to be done.

One avenue we will pursue is the estimation or learning of a detailed state-based

behavioral model (in which color changes can be a function of current local color

distribution, neighbor degrees, duration of the experiment so far, and a variety of

other temporal variables), for which we can exploit the considerable volume of step-

by-step, individual color change decisions we have from the experiments.

5.6 Conclusions and Future Work

This chapter has described the first behavioral experiments on distributed graph

coloring, a challenging but natural optimization problem, and found that human

subjects can perform surprisingly well. Preliminary but evocative findings show
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strong dependence of behavior and performance on graph structure, information

view, and incentives.

Obviously we have examined but a small fraction of even the limited experimen-

tal design space we have introduced. A major component of our future work will be

to continue to explore this design space, as well as to introduce further dimensions.

The human subject networks we studied were small, a perhaps necessary conse-

quence of the carefully controlled, simultaneous play experiments. It is tempting to

contemplate Web-based studies [93] on a much larger scale, which will require ad-

dressing incentives, attrition, communication, and many other issues. The network

topologies examined here were but a sampling of the rich space of possibilities and

recent network formation models. Rather than imposing a chosen network structure

on subjects, it would also be interesting to consider scenarios in which the subjects

themselves participated in the network formation process, while still allowing some

variability of structure. Future work should consider an even wider range of natu-

ral collective problems and activities. Candidates include problems of agreement or

consensus rather than differentiation, and problems involving the formation of local

teams or subgroups specifying certain properties (such as being fully connected or

having at least one member of each of a fixed number of types or roles). We view

the research agenda outlined here to be a behavioral complement to our ongoing

theoretical work attempting to relate structural properties of networks to strategic

outcomes.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis examines a variety of different models using a variety of different tech-

niques, but all of the models have a few characteristics in common, and all of the

analysis techniques aim to understand the same relationship. Each model exam-

ines an economic or game theoretic interaction over a variety of network topologies.

Similarly, the various analysis techniques, which include human subject experimen-

tation, simulation with real and artificial data, and theoretical analysis, are all used

to understand the effect of network topology on behavior. More specifically, Chap-

ter 5 describes the first controlled, human subject experiment designed to glean how

arranging people in different networks impacts their ability to collectively solve a

problem. The data from the experiment showed that decreasing the diameter of

the networks made it easier for the subjects to find a valid coloring of the network

they were arranged in. Chapter 2 analyzes a much more complex model of economic

exchange over a significantly richer class of network topologies than previous work.

Chapter 3 analyzes a similar model except the formation of the network is considered

part of the game. This is the first work that gives such a complete characterization

of equilibrium networks for a market based, network formation game. Moreover,
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the theorems, experiments, and simulations in the models of Chapters 2 and 3 show

that the equilibrium wealth of the players can be quantified in terms of the network

topology. Finally, Chapter 4 describes a model of evolutionary game theory, which

is often used to model social and biological interactions. Again, this is the first

time that an evolutionary game theoretic model of such generality was studied over

networks. The theorems in this chapter show that the random matching scheme of

the classical model of evolutionary game theory is equivalent, for the the purposes

of characterizing stable strategies, to randomizing the network or randomizing the

mutations.

All of these results begin to answer the central question of this thesis: if players

are arranged in a network, and they are strategically interacting only with other

players in their local neighborhood, how does the topology of the network affect the

outcome of the interaction? Answering this question is important for two reasons.

First, it will help the scientific community understand how current networks affect

the behavior and dynamics of agents in modern distributed environments. Second,

it will help us understand which network topologies are best suited for specific ap-

plication domains, which will in turn aid in the building of future networks.

These research directions are significant because the rise of the Internet has made

the interaction of self-interested agents with possibly conflicting goals much more

prevalent. In addition, these types of models can be applied to networks of humans

(be they individuals, firms, or organizations) who interact with a similar variety of

strategies and goals. These interactions between selfish agents necessitate powerful

game theoretic and economic models. Furthermore, for this work to have a broad

impact, these models must incorporate network topologies similar to those seen in

nature. Fortunately, the burgeoning field of social network theory is producing many

studies on the topology of these types of networks. Techniques from computer science

can be used to theoretically analyze and experimentally simulate economic models

over these types of networks.
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The most important, and broadest, contribution of this thesis is the exploration

of the intersection of the fields of economics, sociology, and computer science. Work

in this area is relatively new, with many open directions that we discuss in the next

section. Despite its recent emergence, the work in this thesis shows that many of

the theoretical and experimental tools necessary to study this field already exist,

such as the behavioral economics paradigm for human experimentation, economic

and game theoretic models, generative models from social network theory, and a rich

theoretical literature on graph theory. Although surely more techniques will need to

be developed. Moreover, given the real world applications, work in the intersection

of these fields is certainly well motivated.

6.2 Future Work

This section provides several different avenues for future research which extend the

study of the effect of network topology on behavior. In addition they all combine

ideas from computer science, game theory, and economics.

6.2.1 Computational Evolutionary Game Theory1

Most evolutionary game theoretic models consider an infinite population of agents.

These agents usually obey some simple dynamic such as imitation or replication.

Typical results in these models show that in the limit (as time goes to infinity) the

population converges to an equilibrium. A major open problem in the intersection of

evolutionary game theory and theoretical computer science is to analyze a population

of n agents, who obey one of these dynamics, and bound the time of convergence to

an equilibrium. The notions of equilibrium and stability might have to be adapted

to this new finite setting. Results along these lines would yield simple, distributed

algorithms that agents could implement and converge to an equilibrium in a bounded

1This section was taken from [98].
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(and hopefully short) amount of time. This would provide contribution beyond

proving the existence of equilibria, and beyond showing that an infinite population

will eventually converge to it. It will show that a population of a given size will

converge to a stable equilibrium within a certain amount of time.

To start on this endeavor, the simplest models could consider n agents, where each

agent could interact with each other agent. One example of such a problem would

be to analyze a selfish routing model, such as the one described in [41], except with

n agents, as opposed to infinitely many, and show a strongly polynomial time bound

for their convergence. After baseline models such as this have been developed and

studied, one might then try to find dynamics that result in these agents converging

to an equilibrium that maximizes an appropriate notion of social welfare. Another

extension would be to consider models where agents are arranged in a graph and

can only interact with agents in their local neighborhood. There are many possible

graph topologies that could lend themselves to this type of analysis such as dense

graphs, random graphs, expanders, and graphs motivated by social network theory.

One could then analyze not only the effect of the graph topology on equilibrium, as

was done in Chapter 4, but also how it affects the convergence time.

It may turn out that hardness results stand in the way of such progress. Then one

could try to bound the time of convergence to an approximate equilibrium, or simply

bound the amount of time the population spends far away from an equilibrium. Also

results such as the one given in [85], imply that there exist games for which it is hard

to compute equilibria. There still could be many well-motivated classes of games for

which arriving at an equilibrium is computationally tractable.

6.2.2 Dynamics for Graphical Evolutionarily

Stable Strategies

Chapter 4 defines a notion of graphical evolutionarily stable strategy, and the theo-

rems in the chapter exhibit families of graphs for which this definition is equivalent
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to the classical definition. An interesting open problem in this line of work is to de-

fine graphical dynamics that converge to such an equilibrium. Next we provide two

examples of dynamics that are inspired by the generative models from social network

theory that may lend themselves to this type of analysis. Consider an initial “seed”

graph which has a population of incumbents and mutants. At each time step choose

a node at random with probability proportional to its fitness. Let u denote this

node. One type of dynamic would be to add a new node v of the same type as u,

and to attach v to u as well as all the nodes adjacent to u. This would model a parent

organism reproducing and the child having the same interactions as the parent. This

is similar to the attachment model of [70]. A second type of dynamic would have

the new node v attach to the existing graph via the preferential attachment scheme

described in Section 2.5. This would model situations where and organisms offspring

does not necessarily experience the same interactions as its parent. Furthermore,

both of these models may be amenable to analysis with more than just two types of

organisms.

6.2.3 Graphical Inequality Aversion

One of the basic assumptions of game theory is that all players are completely ra-

tional. The central thesis of behavioral game theory, however, posits that people

are not always completely rational. This field introduces models that describe and

quantify how people deviate from full rationality. Fehr and Schmidt introduce one

such model which is called inequality aversion [39]. It was designed by analyzing

data from behavioral experiments of the ultimatum game, which we describe next.

The ultimatum game is a two-player game, one player is the proposer and one player

is the responder. The proposer is initially given $10, and decides to give x amount

to the responder, where $0 ≤ x ≤ $10. Then the responder decides to either accept

or reject the offer. If the responder accepts, he or she gets $x, and the proposer gets

$10−x. If the responder rejects, neither party receives any money. If both players
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were rational then the proposer would offer $0.01, and the responder would accept.

The results of the behavioral experiment, however, were quite different. Roughly

60%-80% of the offers were in the $4-$5 range. Also, only 3% of offers were below

$2 and they were frequently rejected. The model of inequality aversion captures

this deviation from rationality by subtracting a “guilt” and “envy” term from the

utility functions of both players. In the case of the ultimatum game, the guilt term

describes the proposers aversion to earning more than the responder, and the envy

term describes the responders aversion to earning less than the proposer.

Analyzing this model in conjunction with the ultimatum game in a general net-

work setting is an open problem [58]. This would provide an excellent first step,

however, the ultimatum game may only generate trivial equilibria in a networked

setting. Even if it does not, analyzing a more complex bargaining scheme would be

interesting in its own right. Corominas-Bosch [25] describes an iterated bargaining

mechanism, which is a natural extension of the ultimatum game, in a networked

setting (this work is described in more detail in Section 2.2). One plausible result

from this line of inquiry could be that for a certain class of games, as the diameter

of the network increases, so does the difference between the highest and lowest paid

player. Analyzing this type of mechanism, using the model of inequality aversion,

over networks motivated by social network theory may yield new insights into wealth

variation in the real world.

Inequality aversion also inspires an open problem that is more computational in

nature. One can view the guilt and envy terms of the inequality aversion model

as a transformation of the payoff bimatrix of a normal form game. It has recently

been shown that computing the Nash equilibria of a normal form came is PPAD-

complete [19]. Another future direction is to analyze the computational complexity

of Nash equilibria of normal form games under the transformation defined by this

model. This future direction comes from [58]. Studying models of graphical inequal-

ity aversion is another example of a well motivated line of research on the intersection
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of economics, computer science, and sociology.

6.2.4 The Effect of Network Topology on Collusion

The focus of this thesis is to understand the effect of network topology on the behav-

ior of the agents in the network. An extension of this goal is the study of the effect

of network topology on the formation of coalitions. Previous work on cooperative

game theory analyzes situations where the action of each agent can affect the payoff

of each other agent. Some of this work imposes a graphical communication structure

where agents can only communicate, and thereby form coalitions, with agents they

are attached to (see [66, 15], both of which are described in Section 1.5). Coalitions

in this case would form a partition of the communication network. No prior work

has studied the case where each agent can only affect the payoff of the agents they

are attached to and agents can only join coalitions with agents they are attached to.

An interesting future direction would be to understand how the coalitional structure

of this type of graphical game would affect the possible equilibria.
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Appendix A

Technical Lemmas for Chapter 2

Lemma A.0.1. Let Sn be a sequence of random variables and let Fn denote the

sigma-field of information up to time n. If E(|Sn+1−Sn||Fn) is a.s. summable, then

with probability 1, −∞ < lim inf Sn and lim sup Sn <∞.

Proof. It suffices to show bounded variation, namely that S ′
n :=

∑n
k=1 |Sk+1 − Sk| is

almost surely finite. Let S ′′
n :=

∑n
k=1 E(|Sk+1 − Sk||Fk). Then E(S ′

nI(S ′′
n < M)) is

bounded above by M , so Pr(S ′
n > M2, S ′′

n < M) < 1/M . Pick M at least 1/ǫ so

that P (S ′′
n > M) < ǫ. Then Pr(S ′

n > M2) < 2ǫ. Hence Pr(S ′
n =∞) < 2ǫ. Since ǫ is

arbitrary, Pr(S ′
n =∞) = 0.

Next we provide the proof of Lemma 2.5.3.

Lemma (2.5.3). There are constants cν,α,p such that for all n, j,

E[Y (n)p] ≤ cν,α,pE[Y (n)]p = O

(

n

j

)pβ

.

Proof. Assume for induction that we have proved this for p−1 (Lemma 2.5.1 proves

the base case for p = 1). Next let zn := E[Y (j, n)p−1] = O(n/j)(p−1)β, and let Fn

denote the σ-field of information up to time n. Conditional on Y (j, n) we start with

the identity

E[Y (j, n + 1)p] = Y (j, n)p +
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(pY (j, n)p−1 + O(Y (j, n)p−2) · Pr(Y (j, n + 1) > Y (j) | Fn) .

Below, we will verify that the above probability is βY (j, n)/n + O(Y (j, n)/n2). As-

suming this for now, we let yn denote E[Y (j, n)p]. Take expectations on both sides

and divide by yn to get

y−1
n yn+1 = 1 +

pβ

n
+ O

(

1

n2

)

+ O

(

zn

nyn

)

= 1 +
pβ

n
+ O

(

j

n1+β

)

.

Taking products now yields

yn+1 =
n
∏

k=j

1 +
pβ

k
+ O

(

j

k1+β

)

.

Taking logarithms gives,

log yn+1 =
n
∑

k=j

log

(

1 +
pβ

k
+ O

(

j

k1+β

)

)

=
n
∑

k=j

pβ

k
+ O

(

j

k1+β

)

(A.1)

= pβ log n− pβ log j + O(1) . (A.2)

Equation A.1 comes from the Taylor series expansion of log(1 + x). Equation A.2

uses the estimate
∑n

i=1 1/i = log n + γ + O(1/n), where γ is Euler’s constant. Thus,

yn+1 = O

(

n

j

)pβ

.

which finishes the induction. It remains to establish the bound on Pr(Y (j, n + 1) >

Y (j, n) | Fn).

The value of βY (j, n)/n is incorrect only because there is a chance that some of

the ν vertices chosen were duplicates and more samples were required. The mean

number of extra samples required is given by

E
n
∑

k=1

(

Y (k, n)

(ν + 1)n

)2

.
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In the case p > 2, the induction hypothesis bounds this by

O

(

n
∑

k=1

n2β−2k−2β

)

which is O(1/n). The probability of attaching to seller j with one of these extra

attachments is therefore O(Y (j, n)/n2) as required.
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Appendix B

Technical Lemmas for Chapter 3

B.1 Proof of Generalization of Theorem 2.4.1

Next we provide a proof of Lemma 3.5.1, which is a generalization of Theorem 2.4.1.

Lemma (3.5.1). Let G = (B, S, E) be a bipartite graph such that |B| = n and

|S| = m. Let τ > 0 be the maximum number such that each element of an exchange

equilibrium consumption plan {xij} can be represented as kτ for an integer k.1 Let

G′ = (B′, S ′, E ′) be the τ -balanced graph of G. Then there exists an exchange equilib-

rium consumption plan for G, where the buyers all earn wealth m/n and the sellers

all earn wealth n/m, if and only if G′ has a perfect matching.

Proof. (← direction) If G′ contains a perfect matching, then an exchange equilibrium

consumption plan for G can be defined as follows. For every edge of (bi
k, s

j
l ) of the

perfect matching, bi
k ∈ B′, sj

l ∈ S ′ add τ/m units of cash going from bi to sj , and

τ/n units of wheat going from sj to bi. By construction, every buyer bi ∈ B has

m/τ copies in G′, and since there is a perfect matching in G′, the amount of wheat

earned by bi is m/n as desired. Similarly, every seller sj ∈ S has n/τ copies in G′

1Since the utilities and endowments of the players are rational, the values of the consumption

plan are also rational [27]. Thus, such a τ must exist.
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and since there is a perfect matching in G′, the amount of cash earned by sj is n/m

as desired.

(→ direction) If there is an exchange equilibrium consumption plan where all

buyers earn wealth m/n for G, then each edge (bi, sj), bi ∈ B, sj ∈ S with kτ units

of cash going from bi to sj , can be partitioned into km distinct edges between the

sets of nodes {bi
k}m/τ

k=1 ⊆ B′ and {sj
l }n/τ

l=1 ⊆ S ′. These edges in G′ can be viewed as

carrying τ/m units of cash from a bi
k to a sj

l and they will form the perfect matching

edges. Now let us count how many edges each node bi ∈ B induces. By the market

clearing condition, the total expenditure of bi is 1 unit of cash. Thus bi induces m/τ

edges which equals the number of corresponding bi
k ∈ B′.

For sj ∈ S we have that its incoming flow is n/m units of cash. Furthermore,

every edge incident on sj was split into km copies each carrying τ/m units of cash

from bi
k to sj

l . Thus there must be n/τ edges incident on the {sj
l }n/τ

l=1 . Therefore,

each edge can be matched with a unique pair of nodes in G′ and form a perfect

matching.

B.2 Lemmas for Theorem 3.4.2

Lemma B.2.1. Let C = (B̃, S̃) be an (m, k)-trading component of a bipartite ex-

change economy G. If

β = argmax
B′:B′⊂B̃ and S′=N(B′)

|B′|
|S ′| ,

then β ≤ m−1
k

.

Proof. Fix a set B′ ⊂ B̃ of size m − 1. Assume for the sake of contradiction that

|N(B′)| < k, that is |N(B′)| = k + l, where l > 0. Then, m−1
k−l
≥ m−1

k−1
> m

k
, which

by Corollary 3.5.1 contradicts the fact that C is an (m, k) trading component. Thus

|N(B′)| = k.
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B.3 Construction of Equilibrium Graphs

B.3.1 Exploitation(k, ℓ) graphs

In this section we show that there are Exploitation(k, ℓ) which are Nash equilibria

of the network formation game. We start by providing a technical lemma.

Lemma B.3.1. If α > 1 − 1/ℓ then at Nash equilibrium of the network formation

game, no seller in a Exploitation(k, ℓ) graph would buy an edge to a buyer of degree

ℓ or ℓ + 1.

Proof. Let s be a seller, and let b be a buyer of degree ℓ or ℓ+1. At Nash equilibrium

of the network formation game, b’s wealth is at most 1/ℓ. Since the players are

rational, the only way for trade to occur over a (b, s) edge is if s offered a price lower

than 1/ℓ. Since α > 1− 1/ℓ, s would only decrease its utility by buying an edge to

b.

Now we are ready to show that Exploitation(k, ℓ) graphs can be equilibria graphs

of the network formation game.

Lemma B.3.2. If α > 1− 2/(max(k + 1, ℓ + 1))2, then any Exploitation(k, ℓ) graph

where nodes with degree k or k +1 and ℓ or ℓ+1 buy all the edges incident on them,

is a Nash equilibrium of the network formation game.

Proof. Let s be a seller with degree k or k + 1. By Lemma B.3.1 we know that

at Nash equilibrium of the network formation game s will not buy any edges to

buyers of degree ℓ or ℓ + 1. Next, let w1, . . . , wk′ be the buyers attached to s in

a Exploitation(k, ℓ) graph. Now say s bought a set of edges that did not contain

all of the wi. Then, since α < 1 and no other players are connected to the wi, s

could increase its utility by buying edges to the those unconnected wi. Thus we can

assume, at Nash equilibrium of the network formation, s buys all the edges to the

wi. Next, we show at formation equilibrium s does not buy edges to other degree 1

nodes.
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By the market clearing condition, the wealth of each of the wi is either 1/k or

1/(k+1), and s wealth is either k or k+1. If s has wealth k+1 and it buys edges to

buyers that have wealth k, these buyers have no incentive to switch to s so it would

not be rational for s to buy an edge to such a buyer. Next, if s wealth is k and it

buys an edges to a buyer b that is also getting price k, b would not buy from s for

the following reason. Assume that if (b, s) is not an edge in the graph b buys from

s′, but when (b, s) is an edge in the graph b buys from s. Then at market clearing

s would offer price k + 1 and then s′ would offer price k − 1. Thus it would not be

rational for b to switch sellers. Finally, if s wealth is k + 1 and a buyer b is getting

price k from s′, s will not buy the edge to b. If s did, then b will split its good evenly

between s and s′. Since the cost of an edge is α > 1− 1/(max(k + 1, ℓ + 1))2, where

k, ℓ > 1 and this edge only increased the utility of s by 1/2, s would not buy this

edge.

Next, let s be a seller of degree 1. Again, by Lemma B.3.1 we know that at

equilibrium s will not buy any edges to buyers of degree ℓ or ℓ + 1. So, all we

have to show is that at equilibrium s will not buy any edges to buyers of degree

1. Consider the result of s buying a edges to a set of buyers B, where |B| = m.

If m > ⌊(ℓ + 1)/2⌋, s wealth would only be ⌊(ℓ + 1)/2⌋. So m ≤ ⌊(ℓ + 1)/2⌋, in

which case s wealth would be m and pay mα for the edges to B. Observe that

m(1 − α) ≤ (ℓ + 1)(1− α)/2 < 1/(k + 1). Thus, buying these m edges would only

decrease the utility of s.

Thus, we have shown that at Nash equilibrium of the network formation game

sellers would buy only those edges designated by the Exploitation(k, l) graph. The

case for buyers is entirely symmetric.

B.3.2 Balanced(k, k + 1) Graphs

In this subsection we show that balanced graph are equilibria graphs of the network

formation game for appropriate values of α. We start by showing that any (k, k +1)
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minimal trading component can be part of a balanced graph. Note that in compari-

son to the previous trading components a (k, k +1) components can differ from each

other. We start by characterizing every minimal (k, k + 1) trading component.

Lemma B.3.3. Let C = (B̃, S̃) be a (k, k + 1) minimal trading component then the

degree of each b ∈ B̃ is exactly 2.

Proof. Suppose, for the sake of contradiction, that there exists a node b ∈ B̃ with

degree 3 in C. Let s1, s2, s3 be its neighbors in S̃. By the minimality of the trading

component we have that there exists three subsets S1, S2, S3, such that si ∈ Si and

that |Si|−1 = |N(Si)\{b}| and that for every S ′ ⊂ Si this equality does not hold (if

such do not exist then we can remove the edge and the trading component will not

be effected, which is a contradiction to its minimality). Let S̄ be the union of S1, S2

and S3 excluding {s1, s2, s3}. Since C is trading component, then by Corollary 3.5.1

for every subset S ′ of S̄, we have |S ′| ≤ |N(S ′)|, and thus there exists a perfect

matching between S̄ and N(S̄), and their cardinality is identical, denote it by ℓ. Now

consider the set S̄ with {s1, s2, s3}, its cardinality is ℓ + 3 however, the cardinality

of |N(S̄
⋃{s1, s2, s3})| is ℓ+1. This is due to fact that if s1 for instance will add two

nodes to N(S̄), then we will have |S1 \{s1}| = |N(S1 \{s1})|+2; this yields a higher

ratio than C’s ratio, which contradicts the fact that C is a trading component by

Corollary 3.5.1. Thus the degree of b at most 2. Note that the degree of b cannot be

1 as its wealth is strictly larger than 1.

Using this characterization for every (k, k + 1) minimal trading component, we

can show that balanced graphs are Nash equilibria of the network formation game

for specific values of α.

Lemma B.3.4. If 1/(k + 1) ≤ α ≤ 1/k then any balanced graph consisting n1-

(k, k +1) trading components and n1-(k +1, k) trading components is an equilibrium

graph of the network formation game.
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Proof. (sketch) Let us consider the strategy of players in a (k, k + 1) connected

component, C, where B̃ is the buyer set and its cardinality is k and S̃ is the seller

set with cardinality k + 1. Before going over all possible cases, we provide the

following fact:

(A) For a graph G, if the lowest wealth obtained by buyers (sellers) is β, then for a

graph G′, such that G ⊆ G′, the wealth of any seller(buyer) is at most 1/β.

We first consider every possible deviation of b ∈ B̃, whose current utility is

k+1
k
− 2α by Lemma B.3.3:

1. Removing one edge: By the minimality of the trading component, if b

removes an edge to s then there exists a subset S ′ ⊂ S̃, which now satisfies

|S ′| = |N(S ′)| − 1. If Algorithm 1 is input G \ {(b, s)} then S ′ is removed first.

Furthermore, every other subset W of S̃ obeys |W | ≤ |N(W )|, and thus there

is no wealth variation and b’s new wealth will be 1. Therefore b gains α from

removing the edge but its wealth decreases by 1/k and will have no incentive

to deviate in this manner.

2. Removing two edges: By Lemma B.3.3, b has exactly two edges, and the

removal of both will make its utility 0, which is clearly less than its previous

utility k+1
k
− 2α.

3. Buying additional edges: By fact (A), b cannot have wealth larger k+1
k

by

adding edges to G.

4. Removing one edge and buying additional edges: By case 1, after re-

moving one edge the wealth of b is 1. Thus the trading components (without

the additional edges) consist of: an (ℓ, ℓ+1)-component where ℓ < k, a perfect

matching component of size (k− ℓ) (both due to the decomposition of C), and

the rest are the (k, k + 1) and (k + 1, k) trading components. Adding edges to

any of (k, k+1) or (k+1, k)-components cannot yield a wealth higher than k+1
k

as k
k+1

is the lowest wealth before doing so, and thus the b has no incentive to
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buy one. Now it is easy to see that buying an edge into the (ℓ, ℓ + 1) will form

the (k, k +1) trading component again, and buying additional edges (to either

the (ℓ, ℓ + 1) component or to the perfect matching component) will have no

influence on the prices. Therefore, the node’s wealth will be at most k+1
k

and

it will by at least two edges, and thus will have no incentive to deviate.

5. Removing two edges and buying additional edges: By Lemma B.3.3

and the minimality of the trading component, it is not hard to see that after

removing two edges, C is decomposed into an isolated vertex b, and (ℓ1, ℓ1 +1)

and (ℓ2, ℓ2 + 1) trading components (note that ℓ2 can be 0 and that ℓ1 + ℓ2 =

k−1). The other trading components are the former (k, k+1), (k+1, k) trading

components. Once again buying edges into the (k, k + 1), (k + 1, k) trading

components cannot help as the maximal price that can that be obtained is k+1
k

and at least two edges must be bought to achieve it. Now buying one or two

edges to the smaller components (that are created from the disconnection) is

identical to the previous cases.

Now let us consider the possible deviations of a node s ∈ S̃. Note that current

strategy of s is not buying any edges and thus its utility is k
k+1

. We first note that

forming edges to nodes b with current wealth larger than 1 is never beneficial as b

will prefer not to trade with s, and such edges will not effect the trading components.

1. Buying a single edge: The edge must be to a node with wealth k
k+1

, and

by similar arguments to Theorem 3.4.1, the wealth of s will be 1. Thus the

new utility of s would be 1−α ≤ 1− 1
k+1

= k
k+1

, which is less than its current

utility.

2. Buying 2 edges: In such case one can see that s will now be part of a

(k+2, k+1) trading component (as a node with wealth higher than 1), however

its utility will be k+2
k+1
− 2α which is smaller than k

k+1
for α ≥ 1/(k + 1).
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3. Buying at least three edges: By fact (A) the wealth of s after buying

such edges is bounded by k+1
k

, and thus the increase in its wealth is at most

k+1
k
− k

k+1
, which is at most 2/k. The edges’ cost on the other hand is ℓα,

which is at least 3/(k + 1), which is always larger than 2/k.

The proof of the following lemma is a straightforward generalization of the pre-

vious. Thus we omit it’s proof.

Lemma B.3.5. If α = 1/(k + 1), then balanced graph consisting n1 (k − 1, k) or

(k, k + 1) trading components and n1 (k − 1, k) or (k, k + 1) trading components is

an equilibrium graph of the network formation game.

B.4 Proof of Theorem 3.4.4

Theorem (3.4.4). Let G be a Nash equilibrium graph of the network formation game.

Then G is equal to its minimal exchange subgraph.

Proof. Let G′ be the exchange subgraph of G. Assume for the sake of contradiction

that G′ is a strict subgraph of G. There are two types of edges which can be in G

and not in G′. The first type consists of edges inside a trading component of G, and

the second type consists of edges connecting two trading components of G. Now

consider running Algorithm 1 on G.

We first deal with the redundant edges inside a trading component of G. Let

Ci be the first connected component output by Algorithm 1 on G such that there

exists an edge (u, v) where u ∈ Ui, v ∈ N(Ui) and (u, v) /∈ G′. For any strict subset

W ⊂ Ui, the edge (u, v) could only increase |N(W )| thereby decreasing |Ui|/|N(Ui)|.
So if (u, v) were not an edge in the input, Algorithm 1 would not choose any subset

of Ui before choosing Ui. In addition (u, v) does not change |N(Ui)| or |Ui|/|N(Ui)|.
Thus Algorithm 1 would still output (Ui, N(Ui)) if (u, v) were not in G. Thus (u, v)

can be removed without affecting the exchange subgraph. Since the price of an edge

is positive G cannot be an equilibrium graph of the network formation game.
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After dealing with edges of the first type, we proceed to the second type. By

definition there are no edges joining nodes in Ui to nodes outside the set N(Ui), so

we only have to deal with edges that join nodes inside N(Ui) to nodes outside Ui.

By Lemma 3.5.3 we have that for every subset of buyers S in Gi+1,
2 |S|/|N(S)| ≤

|Ui|/|N(Ui)|. Adding the edges that were removed while moving to Gi+1, imply that

in Gi, |S|/|N(S)| could only be only smaller (as N(S) might be larger). Thus Ui

remains the set that maximizes |Ui|/|N(Ui)| in Gi. So the edges that join nodes

inside N(Ui) to nodes outside Ui do not appear in Gj, where j ≥ i + 1. Thus they

can be removed without affecting the exchange subgraph. Since the price of an edge

is positive G cannot be an equilibrium graph of the network formation game.

2The subgraphs Gi and Gi+1 of G are defined by Algorithm 1 in Section 3.5.2
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Appendix C

Technical Lemmas for Chapter 4

Lemma C.0.1. If p = Ω(1/nc) for any constant 0 ≤ c < 1, then the minimum

degree of a vertex in almost every Gp is at least (1− γ)pn, for all constants γ > 0.

Proof. Fix a vertex v ∈ V , by the Chernoff bound,

Pr{deg(v) < (1− γ)np} <
1

enpγ2/2
.

By the union bound (Boole’s inequality) we get

Pr{∪v∈V deg(v) < (1− γ)np} <
n

enpγ2/2
.

Since p = Ω(1/nc),

lim
n→∞

n

enpγ2/2
=

n

eΩ(n1−c)γ2/2
= 0.

Thus for any ǫ > 0, there exists an n0 such that for all n > n0,

Pr{∪v∈V deg(v) < (1− γ)np} < ǫ.

Taking the complement of this event, we conclude

Pr{∩v∈V deg(v) ≥ (1− γ)np} > 1− ǫ.
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Lemma C.0.2. If c1, c2, . . . , cm are integers greater than 1 and A =
∑m

k=1

(

ck

2

)

and

B =
∑m

k=1(ck − 1) then B ≥
√

A/2.

Proof. The proof is by induction on m. For the base case, setting 2(c1−1) ≥
(

c1
2

)1/2

and simplifying results in 7c2
1−7c1 +8 ≥ 0. This polynomial is positive when c1 ≥ 2.

We assume the claim is true for upto m integers.

m+1
∑

k=1

(ck − 1) =
m
∑

k=1

(ck − 1) + (cm+1 − 1)

≥

√

∑m
k=1

(

ck

2

)

2
+

√

(

cm+1

2

)

2

≥

√

∑m+1
k=1

(

ck

2

)

2

The second line follows from the first line, by the induction hypothesis and by

the same argument as the base case. The third line follows from the second line from

the inequality
√

x +
√

y ≥ √x + y.

Lemma C.0.3. Given a family of graphs G = {Gn = (Vn, En)}∞n=0, and a mutant

family M = {Mn}∞n=0, which is determined by labeling each vertex a mutant with

probability ǫ > 0, let {ǫn}∞n=0 be a sequence of random variables such that ǫnn = |Mn|
for all n. Then the sequence random variables {ǫn}∞n=0 converge to ǫ in probability.

Proof. By Chernoff we get the following two bounds, for all τ > 0

Pr(ǫn > (1 + τ)ǫ) = Pr(ǫnn > (1 + τ)ǫn) ≤ exp(−ǫnτ 2

3
),

Pr(ǫn < (1− τ)ǫ) = Pr(ǫnn < (1− τ)ǫn) ≤ exp(−ǫnτ 2

2
).

Combining these with the union bound shows,

Pr(ǫn /∈ (1± τ)ǫ) = 2 exp(−ǫnτ 2

3
).

Thus, for all τ > 0, limn→∞ Pr(|ǫn − ǫ| ≥ τ) = 0.
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Wexler, and Tim Roughgarden. The price of stability for network design with

fair cost allocation. In Proceedings of the 45th Annual IEEE Symposium on

Foundations of Computer Science, pages 295–304, 2004.

[3] Elliot Anshelevich, Anirban Dasgupta, Éva Tardos, and Tom Wexler. Near-
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[7] Albert-László Barabási. Linked: How Everything Is Connected to Everything

Else and What It Means. Plume, 2003.
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