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Monopsony in Online Labor Markets†

By Arindrajit Dube, Jeff Jacobs, Suresh Naidu, and Siddharth Suri*

Despite the seemingly low switching and search costs of on-demand 
labor markets like Amazon Mechanical Turk, we find substantial 
monopsony power, as measured by the elasticity of labor supply fac-
ing the requester (employer). We isolate plausibly exogenous varia-
tion in rewards using a double machine learning estimator applied to 
a large dataset of scraped MTurk tasks. We also reanalyze data from 
five MTurk experiments that randomized payments to obtain corre-
sponding experimental estimates. Both approaches yield uniformly 
low labor supply elasticities, around 0.1, with little heterogeneity. 
Our results suggest monopsony might also be present even in puta-
tively “thick” labor markets. (JEL C44, J22, J23, J42)

Generations of economics students are taught that the labor market is best 
described as competitive, with firms facing perfectly horizontal labor supply curves. 
But a popular alternative view holds that the labor market is characterized by perva-
sive monopsony, and this view has been bolstered by a recent, fast-growing literature 
(Naidu, Posner, and Weyl 2018) suggesting that even twenty-first century US labor 
markets exhibit a substantial degree of market power, possibly due to increased con-
centration (Benmelech, Bergman, and Kim 2018; Azar, Marinescu, and Steinbaum 
2017) or increased use of legal devices such as no-poaching or non-compete agree-
ments (Krueger and Ashenfelter 2018; Starr, Prescott, and Bishara 2017). In this 
paper, we present direct experimental and quasi-experimental estimates of monop-
sony in a thick online spot labor market with low putative search frictions. We find 
considerable market power even here, suggesting that monopsony is not limited to 
thin labor markets, nor markets with high search frictions and/or legal restrictions, 
and may be far more common than previously thought.

The emergence of online labor platforms represents an idealized environment 
where frictions are presumably very low. In his review of Manning’s 2003 book 
Monopsony in Motion, Peter Kuhn made the following conjecture: “ u pward-sloping 
labor supply curves—whether induced by search or other factors—seem unlikely 
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to me to be a serious constraint for most firms. This seems even more likely to be 
the case in the near future, as … information technology has the potential to reduce 
search frictions” (Kuhn 2004, p. 376). Counter to this conjecture, we find a highly 
robust and surprisingly high degree of market power even in this large and diverse 
online spot labor market.

Kingsley, Gray, and Suri (2015) argue employers in online labor markets have sig-
nificant market power, and show considerable concentration on Amazon Mechanical 
Turk (MTurk)—a widely-used online labor market—but they stop short of quan-
tifying requester-specific supply elasticities. In this paper, we rigorously estimate 
the degree of requester market power in MTurk. MTurk is the most popular online 
micro-task platform, allowing requesters (employers) to post jobs, which workers 
can complete for pay. In addition to showing that market power can exist even in 
thick markets for spot labor, understanding monopsony in online labor markets is 
independently important as they are likely to become much more common.

We provide initial evidence regarding how sensitive the duration of task vacan-
cies are to task rewards, using data from a near-universe of tasks scraped from 
MTurk. This evidence provides us with an estimate of wage-setting (monopsony) 
power facing task requesters (Manning 2003, Card et al. 2018). We isolate plausibly 
exogenous variation in rewards using a double machine learning (Chernozhukov 
et al. 2018) method, which controls for a highly predictive function of observables 
generated from the textual and numeric fields associated with each task. This empir-
ical strategy is a labor market analogue to Einav et al. (2015), who match products 
and sellers using a large sample of listings on eBay to estimate demand elasticities.

We then present results from a number of independent experiments on the sen-
sitivity of workers’ acceptance of tasks to the level of pay offered. We analyze data 
from five previous experiments that randomized wages of MTurk subjects, with the 
full list of experiments we surveyed given in online Appendix B. While the previ-
ous experimenters had randomly varied the wage, none except Dube, Manning, and 
Naidu (2018) recognized that they had estimated a task-specific labor supply curve, 
nor noticed that this reflected monopsony power on the MTurk marketplace. We 
empirically estimate a labor supply elasticity facing requesters on both a “recruit-
ment” margin where workers see a reward and associated task as part of their normal 
browsing for jobs, and a “retention” margin where workers, having already accepted 
a task, are given an opportunity to perform additional work for a randomized bonus 
payment. The experimental recruitment elasticity estimate is obtained from a novel 
“honeypot” experimental design, where randomly-varied wage offers were made 
observable only to random subsets of MTurk workers.1

Together, these very different pieces of evidence provide a remarkably consis-
tent estimate of the labor supply elasticity facing MTurk requesters, indicating the 
robustness of our results. The three experiments with a “honeypot” design suggest 
a recruitment elasticity between 0.05 and 0.11. Similarly, retention probabilities do 
not increase very much as a function of reward posted, with implied retention elas-
ticities in the 0.1 to 0.5 range for the two experiments using that design. The preci-
sion-weighted average experimental requester’s labor supply elasticity is 0.14, and 

1 In search-based models of dynamic monopsony, the labor supply to a firm includes both recruitment and 
retention margins.



35DUBE ET AL.: MONOPSONY IN ONLINE LABOR MARKETSVOL. 2 NO. 1

in particular the pooled recruitment elasticity is 0.06, remarkably close to the cor-
responding 0.096 estimate produced by our preferred double ML specification. The 
estimates are uniformly small across subsamples, with little heterogeneity by reward 
amount. This close agreement suggests that the constant elasticity specification, 
commonly used in the literature, may not be a bad approximation in this context. As 
a further contribution, our paper provides an independent—and favorable—assess-
ment of the double ML estimator against an experimental benchmark.

I. Monopsony in a Task Market

Monopsony is characterized by two features: wage-setting power and inability 
to wage-discriminate. MTurk, with its task-posting structure, did not offer many 
margins for wage-discrimination until very recently (after our sample period). In 
our sample period, requesters could only restrict the set of eligible workers based on 
prior acceptance rates (the rates at which previous requesters had deemed their work 
satisfactory) or location (e.g., by country or by US state).

Monopsony power may arise due to a small number of employers on the plat-
form, from search frictions in locating higher paying tasks, or from idiosyncratic 
preferences over task characteristics. Prior work has shown that all three of these 
reasons are at play in MTurk. First, about 10 percent of all requesters post approx-
imately 98–99 percent of all tasks to the AMT platform implying substantial mar-
ket concentration (Kingsley, Gray, and Suri 2015; Ipeirotis 2010). Second, workers 
often resort to communicating via off-platform online forums to reduce search costs 
(Gray et al. 2016). Third, there is evidence for task specialization among workers 
(Yin et al. 2016).

In online Appendix A, we present a simple model of the MTurk market where 
employers set wages and wait for tasks to be filled. Each job is seen by a constant 
fraction  λ  of workers, who have a distribution of reservation wages (derived from 
a random utility or rational inattention model) given by  F (w)  ∝  w   η  . We show that 
the labor supply elasticity,  η , can be recovered from a regression of log duration on 
log reward, as well as directly from experimental estimates.

II. Observational Evidence on Recruitment Elasticity from MTurk

A. Data and Empirical Strategy

For our observational analysis, we use two primary sources of scraped MTurk 
data. The first dataset was obtained from Ipeirotis (2010), and covers the January 
2014 to February 2016 period. The data consists of over 400,000 scraped HIT 
batches from the MTurk Tracker web API. This scraper downloaded the newest 200 
HIT batches posted to MTurk every six minutes, then the status page for each dis-
covered HIT batch was checked every minute until the page reported that all HITs 
in the batch had been accepted.

Beginning in May 2016 we launched our own scraper, which took snapshots of 
all HIT batches on MTurk every 30 minutes, and later increased to every 10 min-
utes beginning in March 2017. This scraping strategy may miss batches that are 
posted and filled too quickly for the scraper to detect (i.e., duration less than 30 or 
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10  minutes). This scraping strategy yielded over 300,000 HIT batches, but stopped 
working on August 22, 2017, and we have been unable to collect more data since 
then. We show results separately for these two datasets, and find broadly similar 
results. Further details on the data are in online Appendix C, including densities of 
the log duration separately by dataset.

We use the time it takes for a posted batch to disappear as a measure of the prob-
ability of acceptance, and regress the duration of the task posting on the observed 
reward to obtain a “recruitment” estimate of  η . As we show in the model in online 
Appendix A, this is valid under the assumption that the rate at which a job is observed 
by workers is independent of the wage. We take advantage of the vast amount of 
available online crowdsourcing data to estimate  η , using high-dimensional regres-
sion adjustment to control for possibly confounding task characteristics. Duration of 
a HIT batch is an imperfect proxy for the actual time until a worker takes the job, as 
batches differ in the number of tasks they offer, and whether workers can do many 
(e.g., image tagging) or just one (e.g., surveys). Further, batches can be terminated 
by the requester, for example when they see that it is being filled too slowly. The 
complementary and quite similar experimental estimates we show below are reas-
suring that we are in fact measuring the labor supply elasticity with the duration 
elasticity.

The resulting linear specification is estimated on observations of HIT batches, 
denoted  h , and is given by

(1)  ln (duratio n h  )  = −ηln (rewar d h  )  +  ν h   +  ϵ h  , 

where  ν  is a nuisance parameter that is correlated with both rewards and durations, 
and  ϵ  is an error term that is conditionally independent of durations, so  E [ϵ | ν]  = 0  . 
An unbiased estimate of  η  requires that we correctly control for  ν , the determinants of 
duration that are correlated with rewards, and in particular, labor demand. The virtue 
of the experimental estimates in the third section is that randomization ensures that  ν  
is independent of  ln (reward)  . With observational data, we must rely on a sufficiently 
rich set of observables to control for  ν , and it is impossible to be completely confident 
that all possible sources of omitted variable bias have been eliminated. However, the 
large and high-dimensional nature of the observational MTurk data lets us push the 
limits of observational analysis. We use two different approaches for the observa-
tional analysis, namely fixed effects regression and double machine learning.

B. Fixed Effects Regression

In our first strategy, we control for requester and time fixed effects along with 
fixed effects for deciles of the time allotted by the requester and the number of HITs 
in the batch. Time allotted is the maximum time the requester allows a worker to 
finish the task, and can be taken as a very rough proxy for how long the task takes 
to finish. Controlling for these fixed effects is an attempt to control for task and 
requester characteristics within a given time period and ideally isolates exogenous 
variation in labor demand. Formally, we assume that   ν h   =  ρ r   +  τ t   +  δ d   +  δ N   . This 
assumption says that the unobserved relative HIT batch attractiveness is captured 
by the identity of the employer   ρ r   , the day the task is first posted   τ t   , the decile of the 
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number of minutes allotted for the task   δ d  ,  and the decile of the number of HITs in 
the batch   δ N   . We can then estimate a standard fixed effects regression:

(2)  ln (duratio n h  )  = − ηln (rewar d h  )  +  ρ r   +  τ t   +  δ d   +  δ N   +  ϵ h   .

Results.—In Table 1 we present basic OLS results and fixed effects regressions. 
Column 1 shows the simple bivariate regression of log duration on log reward. 
Unsurprisingly this regression is inconclusive, likely because of extensive omitted 
variables that are correlated with task attractiveness and the intensity of requester 
demand, both of which would be correlated with both the reward posted as well 
as the time until the HIT is filled. Column 2 implements the fixed-effects specifi-
cation, controlling for deciles of time allotted for the task as well as fixed effects 
for requester and the date posted described above. The coefficient on log reward is  
−0.06 , but it is imprecise and statistically indistinguishable from 0.

C. Double Machine Learning

As our second approach, we implement a “double machine learning”  
(double ML) estimator recently developed by Chernozhukov et al. (2018), which in 
our case uses an ensemble machine learning approach to model the unobserved  ν .

In particular, we suppose that  ν  in equation (1) is equal to   g 0   (Z)  , an unknown 
function of a high-dimensional vector of observable variables  Z . We further suppose 
that variation in rewards is generated by another function of  Z  so that  ln (rewards)   
=  m 0   (Z)  + μ . Combining these two equations we get

(3)  ln (duration)  = − ηln (reward)  +  g 0   (Z)  + ϵ, E [ϵ | Z, ln (reward) ]  = 0 ,

(4)  ln (reward)  =  m 0   (Z)  + μ, E [μ | Z]  = 0. 

The benefit of the procedure proposed by Chernozhukov et  al. (2018) stems 
from the fact that it allows us to utilize any number of state-of-the-art machine 
learning methods, such as neural nets or random forests, to obtain estimates 

of the conditional expectation functions     ̂ l  0   (Z)  = E [ln ( ̂  duration )  | Z]   and  

   ̂  m  0   (Z)  = E [ln ( ̂  rewards )  | Z]   which are then “partialled out” to obtain our desired 
estimator   η ˇ   . Note that   l 0    is different from   g 0    because it is not conditional on  
ln(reward). Specifically, from our machine learning-estimated     ̂ l  0   (Z)   and    ̂  m  0   (Z)   
we can compute the residuals from (3) and (4) as   ̂  μ  = ln (reward)  −   ̂  m  0   (Z)   and  
  ̂  ξ  = ln (duration)  −   l ̂   0   (Z)  , respectively, and use these residuals to compute the final 
estimator as

(5)    η ˇ     0  =   (  1 _ n     ∑ 
i=1

  
n

       ̂  μ  i     2 )    
−1

   1 _ n     ∑ 
i=1

  
n

     ̂  μ  i    ̂  ξ  i   .

The bias from overfitting will not asymptotically go to 0 if the same data is used to 
estimate   l 0   (Z)   and   m 0   (Z)   and  η . However, if a different sample is used to estimate  
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  l 0   (Z)   and   m 0   (Z)   and   η ˇ    is averaged over multiple folds, then the estimator is consis-
tent and unbiased.

The intuition behind this estimator is similar to the classic partial regression for-
mula. In equation (1) the partial regression formula implies that  η  could be recov-
ered from a regression of  E [ln (duration)  | ν]   on  E [ln (reward)  | ν]  . The double ML 
estimator uses machine learning to form proxies for  ν  that predict both conditional 
expectations very well, implying that the resulting residuals have “partialled out” a 
very flexible function of all covariates that capture as much of the variation as pos-
sible without overfitting.

Double Machine Learning Features.—Double machine learning allows us to 
leverage a large number of covariates for identifying causal effects, using whichever 
prediction algorithm has highest goodness-of-fit (see Appendix Table 6 for   R   2  ) in 
held-out data. We construct a large set of both textual and non-textual covariates as 
inputs to the double ML procedure. We generate four distinct types of textual fea-
tures from each HIT group’s description, title, and list of keywords:  n -grams, topic 
distributions, Doc2Vec embeddings, and hand-engineered features. The details can 
be found in online Appendix D. Additionally, we use non-textual features from the 
HIT including information about the batch size, time allotted for each HIT in the 
group by the requester, time remaining before expiration of the HIT group, required 
qualifications (e.g., worker acceptance rate required to be above  x  percent), the vol-
ume of HIT groups posted by the requester across the marketplace, and so on (the 
full set of features is described in online Appendix D.3).

To satisfy the sample-splitting requirement of the double ML estimator, the full 
set of HIT groups is split into two equally-sized subsets,  A  and  B . Each subset is 
further split into training and validation sets, with 80 percent of the observations 
in  A  going into   A train    and 20 percent into   A val   , and similarly for   B train    and   B val   . The 
machine learning then proceeds in two “stages.”

In the first stage, the  n -gram features are computed for   A train    and   B train   , and two 
series of learning algorithms are run, the first with   A train    as training data and   A val    
as test data, the second with   B train    as training data and   B val    as test data. For each 

Table 1—Duration Elasticities from Observational MTurk Data

(1) (2) (3) (4) (5) (6) (7)

log reward 0.186 −0.0600
(0.0947) (0.0585)

log reward-ML res. −0.0958 −0.0787 −0.198 −0.181 −0.0299
(0.00558) (0.00651) (0.0281) (0.0161) (0.00402)

Observations 644,873 629,756 644,873 629,756 93,775 292,746 258,352
Clusters 41,167 26,050 41,167 26,050 6,962 18,340 24,923
Type OLS FE ML ML–FE ML ML ML
Data Pooled Pooled Pooled Pooled 2017 2016–2017 2014–2016

Notes: This table presents  η  estimates using data scraped from MTurk. Units are HIT batches. Column 1 presents 
the unadjusted coefficient from a bivariate regression of log duration on log reward. Column 2 estimates the specifi-
cation in equation (2). Column 3 presents estimates from an OLS regression of the residualized log duration on the 
residualized log reward, as in equation (5) averaged across the two sample splits. Column 4 adds the fixed effects 
in column 2 as further controls to column 3. Columns 5–7 present the double ML estimate from different scraped 
subsamples. Standard errors are clustered at the requester level.  
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series and each dataset (Ipeirotis 2010 and our own scraped data) the algorithm 
which achieves the highest total validation score (here the sum of validation scores 
for reward prediction and duration prediction) is selected as the “final” algorithm 
to be used for the remainder of the procedure. In each case we ran, scikit-learn’s 
RandomForestRegressor achieved the highest score, and so is the machine learning 
method underlying all of the double ML results.2 The random forest regression con-
structs a series of decision trees, each of which is built based on a random subset of 
all available features, and takes the mean prediction over all of these trees to be the 
estimate. For more on random forest regression, see Breiman (2001, section 11).

To begin the second stage of the procedure, we select the 100 textual features 
which best predicted the reward values in the first stage, along with the 100 which 
best predicted the duration values, and set these as the first 200 columns of our 
second-stage feature matrix. The additional text and numeric features, described in 
online Appendix D, are then appended to the matrix. The “final” algorithm discov-
ered in stage one is then run twice, the first time with the HIT groups in  A  used as 
training data and groups in  B  used as test data, and the second with the training and 
test sets reversed. These two predictions are then subtracted from the true values, 
and these residuals are combined as specified in equation (5) to produce the final 
estimate    η ˇ     0   (along with its standard error) for each dataset.

Results.—In Table 1 we present the double ML regressions (with and without 
fixed effects) alongside the basic OLS results and fixed effects regressions. Columns 
3 through 7 show the results from the double ML estimator. Column 3 shows the 
bivariate OLS regression of residualized durations on residualized rewards, and here 
the coefficient on residualized rewards is a strongly significant  − 0.096 . Figure 1 
shows the corresponding binned scatterplot, which shows the binned residuals fall-
ing quite close to the linear fit implied by a constant elasticity. Moving from the 25th 
to the 75th percentile of the rewards distribution (from $0.05 to $0.60) would result 
in a 24 percent decrease in duration, a reduction in the time to completion of roughly 
13 hours, over a mean duration of 55 hours.

Column 4 in Table 1 adds the fixed effects from column 2 to the ML specifica-
tion, and obtains a quite similar estimate of  − 0.079 , suggesting that the  double ML 
procedure is effectively purging the effects of observable variables omitted from 
column 1 (as a large change in the coefficient would suggest that there were other 
unobserved variables confounding the regression). Columns 5–7 show the  double 
ML specifications for the different scraped samples. While there is some heteroge-
neity, the implied elasticities are uniformly small.

III. Experimental Evidence on Labor Supply Elasticity Facing Requesters on MTurk

The observational evidence is quite suggestive of a requester’s recruitment elas-
ticity,  η , being low, but even in the double ML estimates concerns about omitted 
variable bias may linger. It is possible that not all task-relevant characteristics have 
been adequately controlled for, despite the high predictive power of our conditional 

2 RandomForestRegressor consistently achieved the highest score out of {AdaBoostRegressor, BaggingRegressor, 
ExtraTreesRegressor, GradientBoostingRegressor, RandomForestRegressor, and SVR (SupportVectorRegressor)}.
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expectation functions above. If we have experimental (random) variation in rewards, 
we can estimate the following regression at the worker level  i :

(6)  Pr (Accep t i  )  = α + β rewar d i   +  ϵ i   ,

yielding an estimate of  η  recovered by  η = β ×   E [reward]  _ 
Pr (Accept)     with the expectation 

taken over the population of workers in the sample. We can compare this estimate of  
η  to the double ML estimate from the observational data above to bolster our con-
fidence because if both estimates yield similar results then the double ML estima-
tor is indeed adequately controlling for unobserved variation, and the experimental 
estimates are externally valid. Next we report experimental estimates of  η  from the 
retention margin, and then proceed to estimate  η  from the recruitment margin—
which is most directly comparable to the double ML estimates.

A. Experimental Retention Elasticities

Horton, Rand, and Zeckhauser (2011) and Dube, Manning, and Naidu (2018) 
both run variants of the following experiment. A simple uniformly priced (say, 
$0.10) HIT is posted. Subjects give demographic information and perform a sim-
ple task (e.g., tagging an image). The subjects are then asked if they would like to 
perform a given number of additional identical tasks for a randomized bonus wage. 
The change in the probability of acceptance as a function of the wage gives the 
responsiveness of requester’s labor supply to random wage posting, with low values 
suggesting a great deal of market power. This is a “retention” estimate of  η  as work-
ers have already been drawn into a HIT  i  when asked whether they wish to continue.

Figure 1

Notes: Binned scatterplot (20 ventiles) for double ML residuals of log duration and log rewards, with  N = 644,873 . 
Residuals are calculated as difference between observed value and predicted value from a random forest trained on 
a held-out sample, as described in Section IIC.
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Experiment 1 was conducted by Horton, Rand, and Zeckhauser (2011), and was 
among the earliest attempts to estimate economic parameters from MTurk. The 
authors aimed to elicit the labor-supply elasticity of online workers to the market, 
but this design does not elicit the market labor supply, but rather the requester’s 
labor supply (i.e., the supply to the experimenter/requester for the particular task). 
The task in this experiment was transcribing Tagalog translations of paragraphs 
from Adam Smith’s The Theory of Moral Sentiments.

Experiment 2 was conducted by Dube, Manning, and  Naidu (2018) in 2016, 
deliberately emulating the design of the Horton, Rand, and Zeckhauser (2011) study 
with the aim of testing for left-digit bias in the requester’s labor supply of online 
workers. Hence the rewards are substantially lower, between $0.05 and $0.15, but 
the sample sizes are correspondingly larger. The task here was tagging sheets of 
the 1850 US census slave schedules for the presence of marks in the fugitive slave 
columns.

We show results for both the full sample and sophisticates (defined as working 
more than 10 hours on MTurk and primarily for money). The resulting requester’s 
labor supply elasticities are shown in columns 1–4 of Table 2. The implied  η  from 
the Horton, Rand, and  Zeckhauser (2011) estimates are quite low, between 0.19 
and 0.25, while implied  η  from the Dube, Manning, and Naidu (2018) estimates are 
even lower, always below  0.12 . Besides differences in the tasks, one likely reason 
for the very slight difference is the different support of the reward variation (Dube, 
Manning, and  Naidu 2018 randomize between $0.05 and $0.15, while Horton, 
Rand, and Zeckhauser 2011 randomize between $0.10 and $0.25), and the com-
position of workers and requesters likely changed considerably between 2011 and 
2016. Despite these differences, the estimates are similarly small.

Table 2—Offer Acceptance and Offered Rewards from Retention Experiments

(1) (2) (3) (4)

Panel A. Horton et al. (2011) probability of accepting offer
Reward 0.127 0.140 0.0861 0.0973

(0.0219) (0.0241) (0.0292) (0.0333)
Observations 328 307 125 107
η 0.234 0.241 0.192 0.202
SE 0.0334 0.0364 0.0594 0.0664
Average reward 11.60 11.63 11.37 11.50
Sophisticated No No Yes Yes
Controls No Yes No Yes

Panel B. Dube et al. (2017) probability of accepting offer
Reward 0.0267 0.0486 0.0764 0.0782

(0.0171) (0.0202) (0.0348) (0.0329)
Controls No Yes No Yes
Observations 5184 5017 1702 1618
η 0.052 0.077 0.118 0.114
SE 0.0333 0.0322 0.0534 0.0479
Average reward 9 9 9 9
Sophisticated No No Yes Yes

Notes: Coefficients from equation (6) from “retention” experiments, and calculated elastici-
ties, assessed at the specification sample mean. Units are individual workers. Robust standard 
errors in parentheses.
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B. Experimental Recruitment Elasticities

Engineering an experiment to test the recruitment elasticity is much more chal-
lenging than estimating the retention elasticity. We take advantage of three pieces of 
prior work, Ho et al. (2015); Hsieh and Kocielnik (2016); and Yin, Gray, and Suri 
(2018), that presented tasks with varying pay rates to random subsets of the MTurk 
population such that workers assigned one pay rate could not see the tasks available 
to other workers who had a different pay rate. We stress that none of the papers actu-
ally estimated a labor supply elasticity using this random variation in pay.

All of these experiments use a two-phase “honeypot” design. In the first phase 
a generic HIT is posted at a fixed pay rate. In this simple task, workers are asked 
a couple of survey questions including whether they would like to be notified of 
future work opportunities. The IDs of the workers who said yes are then randomized 
into treatment conditions. During the second phase of the experiment HITs corre-
sponding to the different treatment conditions are launched with identical tasks but 
varying rewards. This design uses a relatively obscure piece of the MTurk API that 
lets a requester make a HIT group visible to only a subset of workers. Thus each HIT 
group can only be seen by and accepted by those treated, and it appears as a regu-
lar HIT group in the MTurk interface for them. This design, which first appeared 
in Ho et al. (2015, section 5) and was later refined in Yin, Gray, and Suri (2018), 
replicates the search environment workers are facing before having said yes to  
the task.

In the first experiment (Ho et al. 2015), 800 people were recruited via a  $0.05   
“honeypot” HIT, and then randomly split into four treatment groups of 200 work-
ers each. The control group (68.5 percent accept rate) earned $0.50 to complete 
the HIT, one treatment (control for our purposes) had an additional surprise 
$1 bonus, of whom 64.5 percent accepted, another treatment had an additional 
 performance-based bonus, and a fourth treatment had a base rate of $1.50, of whom 
70.5 percent accepted. We drop the group that was given a performance-based bonus 
incentive and focus on the base payment, ignoring the unexpected bonus payment, 
to isolate the recruitment elasticity.

In the second experiment (Yin, Gray, and Suri 2018), 1,800 workers recruited 
using the same “honey pot” protocol were randomly split into three treatment 
groups, with rewards for the additional task of $0.03, $0.04, and $0.05, respectively. 
For the task itself, users were asked to categorize an Amazon.com review as positive 
or negative. Of the 600 in each group, 357 in the $0.03 group accepted, 351 in the 
$0.04 group accepted, and 371 in the $0.05 group accepted.

In the third experiment (Hsieh and Kocielnik 2016), 927 workers were recruited 
via a similar design, with the task being to brainstorm the “number of uses of a 
brick” (a measure of creative thinking) and were given one of seven random rewards: 
$0.00, $0.05, $0.25, 1 percent chance of $5, 1 percent chance of $25, and $0.25 and 
$0.50 donation to charity. We drop the lottery and charity treatments and examine 
only the variation in rewards ($0.00, $0.05, or $0.25) , which leaves us with 338 
observations. Of these, 131 were in the $0.00 reward group (68 accepted), 89 were 
in the $0.05 group (52 accepted), and 118 were in the $0.25 group (82 accepted). 
We made a synthetic dataset based on these numbers in communication with the 
authors, as the replication data was unavailable.
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Neither of the first two experiments asked demographic characteristics, and rep-
lication data for the third is unavailable, so there is limited capacity to control for 
observables. However, the randomized assignment of the reward mitigates any role 
for covariates besides improving precision. Table 3 shows the simple OLS regression 
results using the same logit specification as equation (6), separately by experiment, 
and then pooled. The pooled regression controls for experiment fixed effects and 
weights by the inverse of the standard deviation of rewards within each experiment.

While the first two experiments have insignificant elasticities, in the third exper-
iment we obtain a statistically significant, but still small elasticity, despite a smaller 
sample size, possibly due to the more attractive nature of the ex post task relative 
to the other two. Even when all experiments are pooled, the point estimates are 
remarkably similar despite the very different wage levels at which the experiments 
were run, and close to the very small estimates obtained from the double ML proce-
dure above. The implied recruitment elasticity from the pooled three experiments is  
0.06  and is distinguishable from 0 at 5 percent significance.

C. Comparison of Estimates

Figure 2 shows the double ML estimates obtained from pooling the two samples, 
split by quintiles of the reward distribution, together with the estimates from each 
of the experiments. The graph also plots the precision-weighted mean elasticity of 
the experimental estimates (weighted by the inverse of the variance of the estimated 
elasticities) of 0.14. The double ML estimates are all very close to this line, despite 
being estimated using very different sources of variation in the rewards. The con-
sistency of the estimates is remarkable, and generally implies a low labor supply 
elasticity facing requesters on MTurk, with some estimates unable to rule out 0 with 
95 percent confidence. Moreover, the labor supply elasticity is largely independent 
of the reward.

We can use our estimates to infer the distribution of MTurk surplus between 
workers and requesters, following the formula in online Appendix A that accounts 
for the dynamics of the requester’s problem. The general formula is different from 
the standard static monopsony problem because a task refused in a given period 
can be filled in the future, thereby reducing the costs of offering “too low” a wage. 

Table 3—Recruitment Elasticities from Three Experiments

(1) (2) (3) (4)

Reward 0.00186 0.0451 0.0287 0.00744
(0.00188) (0.0587) (0.0104) (0.00385)

Observations 600 1,800 338 2,738
η 0.0497 0.0724 0.115 0.0610
SE 0.0503 0.0944 0.0417 0.0290
Average reward 83.33 4 10.04 22.13
Experiment Spot diff. Classify reviews Brainstorming Pooled

Notes: Coefficients from equation (6) estimated from “recruitment” experiments, and calcu-
lated elasticities, assessed at the experimental sample mean. Units are individual workers. The 
pooled specification includes experiment fixed effects, and is weighted by the inverse of the 
standard deviation of rewards within each experiment. Robust standard errors in parentheses.
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However, when employers are sufficiently impatient (because the task is time-sen-
sitive), the markdown falls to the static Lerner rule. Even these static markdowns 
are quite large, with workers paid less than 13 percent of their productivity. Despite 
considerable differences in the institutional environment and type of work, these 
are close to the markdowns implied by firm labor supply elasticities estimated for 
nurses by Staiger, Spetz, and Phibbs (2010), among the lowest in the literature.

Are employers using their market power? To check this rigorously, we would 
need variation in the extent of market power facing requesters, and our observational 
analysis suggests that elasticities are generally constant. We examine heterogeneity 
in the double ML elasticities by task type, using the categorization developed by 
Gadiraju, Kawase, and Dietze (2014). While there are only six categories and the 
elasticities do not vary very much across categories, online Appendix Figure C.3 
shows that tasks with a higher elasticity do have higher reward per minute of time 
allotted, suggesting that employers are using their monopsony power. The calibrated 
model explaining round number bunching in Dube, Manning, and  Naidu (2018) 
provides additional evidence on employer optimization on MTurk. Consistent with 
greater competition in familiar tasks, we also find that more frequent types of tasks 
have slightly higher elasticities.

IV. Discussion and Conclusion

The findings in this paper provide strong evidence that even in a thick labor mar-
ket where search frictions may appear to be low, there is considerable monopsony 
power. As discussed in the introduction, this finding is consistent with the growing 
body of observational evidence from offline labor markets suggesting monopsony 

Figure 2

Note: Baseline estimates from both “recruitment” and “retention” experimental designs (column 1 of Table 2 and 
columns 1–3 of Table 3), as well as double ML recruitment elasticities from observational data estimated by quin-
tile of the reward distribution ( N  for each quintile is between 83,195 and 175,000).
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might be at play in those markets as well. Overall, these results call into question the 
idea that monopsony power is relevant only in unusual cases like company towns or 
in the presence of legal restrictions on worker mobility.

The source of the monopsony power on MTurk likely lies in the information and 
market environment presented to workers and requesters, together with the absence 
of bargaining or many margins of wage discrimination. In particular, the tastes dif-
ferent workers have for a given task may be quite dispersed and not easily discerned 
by requesters, which induces requesters posting a wage to trade-off the probability 
of acceptance against a lower wage. Further, this may be exacerbated by the infor-
mation environment facing workers, which makes searching for alternative jobs dif-
ficult. Jobs are highly heterogeneous in time required, entertainment value (“fun”) 
to the worker, and the reliability of the requester in approving payments (Benson, 
Sojourner, and Umyarov 2017). There is no single dimensional index of job qual-
ity that can be used to order HIT groups while searching: workers cannot sort HIT 
batches by the real wage.

As online platforms for data work have increased in prevalence, efforts to miti-
gate the effects of market power have emerged. For example, workers created their 
own mechanisms for sharing information about good and bad requesters and HITs 
via online discussion forum (Gray et al. 2016). Tools like Turkopticon (Irani and 
Silberman 2013) reduce the information asymmetry by supplying workers with 
reputation information on requesters. Platforms such as Upwork allow workers to 
bargain on the wages for a task. Furthermore, some platforms are designed from 
the ground up to be “worker-friendly” such as Stanford’s Dynamo. Also, scientific 
funders such as Russell Sage have instituted minimum wages for crowdsourced 
work. The high value data services have as inputs into artificial intelligence has led 
some to call for “data labor unions” to collectively bargain over high-quality labeled 
data (Arrieta-Ibarra et al. 2018). Our results suggest that these sentiments and poli-
cies may have an economic justification.
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